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Three different database docking programs (Dock, FlexX, Gold) have been used in combination
with seven scoring functions (Chemscore, Dock, FlexX, Fresno, Gold, Pmf, Score) to assess the
accuracy of virtual screening methods against two protein targets (thymidine kinase, estrogen
receptor) of known three-dimensional structure. For both targets, it was generally possible to
discriminate about 7 out of 10 true hits from a random database of 990 ligands. The use of
consensus lists common to two or three scoring functions clearly enhances hit rates among the
top 5% scorers from 10% (single scoring) to 25-40% (double scoring) and up to 65-70% (triple
scoring). However, in all tested cases, no clear relationships could be found between docking
and ranking accuracies. Moreover, predicting the absolute binding free energy of true hits was
not possible whatever docking accuracy was achieved and scoring function used. As the best
docking/consensus scoring combination varies with the selected target and the physicochemistry
of target-ligand interactions, we propose a two-step protocol for screening large databases: (i)
screening of a reduced dataset containing a few known ligands for deriving the optimal docking/
consensus scoring scheme, (ii) applying the latter parameters to the screening of the entire
database.

Introduction

Virtual screening of chemical databases is now a well-
established method for finding new leads, provided that
a three-dimensional structure of the target is known.1
When used prior to experimental screening, it can be
considered as a powerful computational filter for reduc-
ing the size of a chemical library that will be further
experimentally tested. As the number of pharmaceutical
targets is predicted to dramatically increase in the
coming years2 with the sequencing of the human ge-
nome, virtual screening methods will undoubtely play
a major role in pharmacogenomics by finding the very
first leads of new targets, especially in cases of orphan
receptors3 for which no information on potential ligands
is known.

Any virtual screening method has to face two critical
issues: docking and scoring. In a first step, the target-
bound conformation and orientation (from now on called
pose) of screened ligands should be predicted with the
best possible accuracy. Several docking programs are
now available that generally are able to predict known
protein-bound ligand poses with averaged accuracies of
about 1.5-2 Å.4 As flexible docking clearly outperforms
rigid body matches,5 most of the current docking pro-
grams consider the ligand as a flexible molecule. Flex-
ible docking is generally based on one of the following
methods: fast shape matching (Dock,6 Eudock7), incre-
mental construction (FlexX,8 Hammerhead9), Tabu search
(Pro•Leads,10 SFDock11), genetic algorithms (Gold,12

AutoDock3.0,13 Gambler14), evolutionary programming,15

simulated annealing (AutoDock2.416), Monte Carlo simu-
lations (MCDock,17 QXP18), and distance geometry (Doc-
kit19). Only those able to dock a flexible ligand within a
reasonable time scale (100-200 s) are suited for virtual
screening purposes. Once the ligand has been docked,
it should be scored according to the tightness of target-
ligand interactions. Again, several scoring methods have
been described in the past decade.20 If one excludes
computationally expensive conformational sampling-
based methods (free energy perturbations,21 linear
interaction energies approximations22) which are the
most accurate but unsuitable to database screening,
they are basically based on either force-field methods
(Dock,6 Gold12), empirical free energy scoring functions
(Ludi23, Chemscore,24 Score,25 Fresno,26 FlexX,8 Plp15),
or knowledge-based potential of mean force (Pmf,27

Drugscore28). All of them have been validated for various
test sets of high-resolution protein-ligand X-ray struc-
tures and are generally able to predict absolute binding
free energies within 7-10 kJ/mol. However, it is pres-
ently unknown which docking/scoring combinations will
provide the best results in terms of hit rates.

With few exceptions,7,9,29-31 most reported database
docking attempts regarding either methodological32-36

or application aspects37-41 have been addressed using
the pioneer Dock program.6 Thus, a reference study
comparing the merits of several database docking
programs is still missing. Furthermore, consensus scor-
ing from two or three independent scoring lists has
recently been shown to outperform single scoring.14

Which scoring function(s) should then be used for
ranking potential hits and is there any relationship
between docking and ranking accuracies?

To answer these questions, we compared the com-
bined use of three popular database docking algorithms
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(Dock, FlexX, Gold) with seven scoring functions (Dock,
FlexX, Gold, Pmf, Chemscore, Fresno, Score) for screen-
ing a 1000-compound library against two different
protein targets, thymidine kinase (TK) and the ligand-
binding domain of the estrogen receptor R subtype
(ERR). A specific database comprising 990 random and
10 known ligands was specifically created for each
target. Thus, results of the virtual screening will be
examined in terms of (i) docking accuracy (rmsd to
known solutions), (ii) scoring accuracy (prediction of the
absolute binding free energy), (iii) consensus versus
single scoring, (iv) discrimination of active from random
compounds, and (v) hit rates and enrichment factors
among the top scorers.

Computational Methods

Preparation of Three-Dimensional Databases. The
Advanced Chemical Directory (ACD v.2000-1, Molecular De-
sign Limited, San Leandro) was first filtered in order to
eliminate chemical reagents,1,42 inorganic compounds, and
molecules with unsuitable molecular weights (lower than 250,
higher than 500). Out of the 75 000 remaining molecules, 990
were randomly chosen and their three-dimensional coordinates
generated using Corina.43 Hydrogen atoms and Gasteiger-
Marsili atomic charges44 were then added using a Sybyl
(TRIPOS Inc., St. Louis, MO) SPL macro, and the final
coordinates stored in a multi mol2 file. For each test case (TK,
ER), a set of 10 known ligands was prepared using the above-
described procedure starting from a IsisDraw (MDL) 2D
structure. Special caution was given to the protonation state
of ionizable groups (amines, amidines, carboylic acids) of all
1000 ligands assumed to be ionized at a physiological pH of
7.4. These new stuctures were then appended to the random
database to create two final libraries of 1000 molecules: a TK
library containing 10 TK ligands and an ER library containing
10 ER antagonists.

Preparation of Protein Coordinates and Definition of
Active Sites. Reference protein coordinates used for docking
were taken from the X-ray structure of TK in complex with
deoxythymidine (pdb entry: 1kim, monomer A)45 and of ER in
complex with 4-hydroxy-tamoxifene (pdb entry: 3ert).46 Al-
though alternative rotameric states exists for a few TK side
chains depending on the bound ligand, we felt that choosing
the crystal coordinates of TK in complex with its natural
substrate (dT) was a reasonable choice since the latter active
site is opened enough to accommodate a broad variety of
ligands. Bound ligand and cofactor atoms were then removed.
As the coordinates of bound water molecules depend on the
type of ligand in the active site (purine vs pyrimidine com-
pounds), all water molecules were removed from the TK
binding site. Hydrogen atoms were added when necessary
(computing Dock grid energies) using standard Sybyl geom-
etries. For each protein target, the active site was defined as
the collection of amino acids enclosed within a 6.5 Å radius
sphere centered on the bound ligand. It comprised 16 and 34
amino acids for TK and ER, respectively.

Dock4.01 Docking. First, a Connolly surface of each
protein’s active site was created using a 1.4 Å probe radius
and further used to generate a set of 31 and 35 overlapping
spheres for TK and ER, respectively. To compute interaction
energies, a three-dimensional grid of 0.35 Å resolution was
centered on both protein active sites. Final grids containing
165 672 (dimension: 17.7 × 20.1 × 18.5 Å) and 260 975 points
(dimension: 22.1 × 18.7 × 25.0 Å) were obtained for TK and
ER, respectively. Energy scoring grids were obtained using an
all atom model and a distance-dependent dielectric function
(ε ) 4r) with a 10 Å cutoff. Amber95 atomic charges47 were
assigned to all protein atoms. Database molecules were then
docked into the protein active site by matching sphere centers
with ligand atoms.6 A flexible docking of all molecules (pe-
ripheral search and torsion drive) with subsequent energy
minimization was performed as follows: (i) automatic selection

and matching of an anchor fragment within a maximum of
100 orientations, (ii) iterative growing of the ligand using at
least 20 conformations (peripheral seeds) for seeding the next
growing stage with assignment of energy-favored torsion
angles, and (iii) simultaneous relaxation of the base fragments
as well as of all peripheral segments and final relaxation of
the entire molecule. Orientations/conformations were relaxed
(energy score only) in 100 cycles of 100 simplex minimizations
to a convergence of 0.1 kcal/mol. The top solution correspond-
ing to the best Dock energy score for each ligand was then
stored into a single multi mol2 file.

FlexX1.8 Docking. Unless specified in the Results section,
standard parameters of the FlexX program8 as implemented
in the 6.62 release of the SYBYL package were used for
iterative growing and subsequent scoring of FlexX poses. Only
the top solution was retained and further stored in a single
mol2 file.

Gold1.1 Docking. For each of the 10 independent genetic
algorithm (GA) runs, a maximum number of 1000 GA opera-
tions was performed on a single population of 50 individuals.
Operator weights for crossover, mutation, and migration in
the entry box were set to 100 100 and 0, respectively. To allow
poor nonbonded contacts at the start of each GA run, the
maximum distance between hydrogen donors and fitting points
was set to 5 Å, and nonbonded van der Waals energies were
cut off at a value equal to 10 kij (well depth of the van der
Waals energy for the atom pair i, j). To further speed up the
calculation, the GA docking was stopped when the top three
solutions were within 1.5 Å rmsd of each other.

Consensus Scoring. All ligands for which a docking
solution had been found were rescored using the CScore
module of Sybyl6.62 comprising the following scoring func-
tions: ChemScore,24 Dock, FlexX, Gold, and Pmf.27 It should
be noted that FlexX scores calculated either from FlexX or
Cscore are very similar (r2 about 0.96 for both sets of 1000
complexes). Original Dock4.0 and Gold scores differ from that
calculated by Sybyl and thus cannot be compared. Therefore,
the Dock, FlexX, and Gold scores proposed by Sybyl were
discarded when the corresponding scoring function was coupled
to the docking procedure. Two additional scoring functions,
Fresno25 and Score,26 were used as part of in-house SPL scripts.
For rescoring docked poses, atomic coordinates of the target
protein were unchanged, and no relaxation of the bound ligand
was performed.

Results and Discussion

Virtual Screening of TK Substrates. Thymidine
kinase (TK) was chosen as a hard test because of several
potential limitations: (i) its binding cavity is accessible
to water, (ii) some side chains of the active site adopt
rotameric states depending on the bound ligand (in-
duced fit), (iii) the participation of water molecules in
mediating ligand binding differs upon the chemical
series to which the ligand belongs (purine vs pyrimidine-
like substrates, see Figure 1), and (iv) most ligands bind
with rather low binding constants (micromolar range).
Out of the set of 10 known TK ligands (Figure 1), only
two display a submicromolar binding constant (dT and
idu) whereas all others bind to TK with micromolar
binding constants (from 1.5 to 200 µM; Dr. L. Scapozza,
ETH Zürich, personal communication).

Initial docking attempts with various parameter sets
for each docking program were first undertaken to
determine the best compromise between docking ac-
curacy (rmsd to the TK-bound X-ray structure of each
ligand) and speed. Using Dock4.01, flexible docking with
rigid-body energy minimization was clearly the method
of choice, when compared to rigid docking (with or
without further minimization, data not shown). Using
a grid resolution of 0.35 Å (alternative resolutions of
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0.2 and 0.5 Å were also investigated), limiting the
number of orientations of the base fragment to 100
(instead of 200 or 500) as well as using 20 conformations
for seeding the next growing stage (instead of 10 or 50)
provided the best averaged results (data not shown).
Only the Dock energy value was computed as it is
generally the most robust among the three possible
scores (energy score, chemical score, contact score).14,28,36

Using FlexX, the type of charges used (formal vs partial
Gasteiger charges) as well as the introduction of water

particles during the docking did not significantly affect
the docking accuracy. Thefore, standard parameters
were also used throughout this study. Last, speed
requirements prompted us to utilize only the library
screening settings of the Gold software (see Computa-
tional Methods). Thus, flexible docking could be per-
fomed at a pace of about 50-100 s/molecule when using
all three docking programs on a standard workstation
(SGI Indigo2, R10K processor).

Using above-cited parameters, we first addressed the
docking accuray of each tool. The 10 TK ligands have
been cocrystallized with TK.45,48,49 Because the protein
coordinates slightly vary with the bound ligand and only
one set of protein coordinates was used for docking (pdb
code: 1kim), the X-ray pose of each ligand was merged
into the reference protein coordinates for comparing
X-ray and docked poses. Out the three docking tools
used, Gold clearly provides the best docking accuracy.
Sixty percent of the known substrates were docked with
less than 1.2 Å rms deviation, and even the worst
docked ligand (ganciclovir) was orientated with a rmsd
of only 3.1 Å (Table 1, Figure 3). Surprisingly, Dock as
well as FlexX were not able to find a reliable solution
for at least three TK ligands (idu, hmtt, and mct for
Dock; hmtt, ganciclovir, and penciclovir for FlexX). For
all these ligands, small conformational changes around
a few side chains (Gln125 for purine compounds, Tyr132
for iodinated pyrimidines, Arg222 for hpt, dhbt, and
mct) are observed in the corresponding X-ray structures
when compared to the reference protein coordinates.
However, as evidenced by the good performance of the
Gold docking tool, the selected protein coordinates do
not impair the binding of TK ligands in the active site.

We next looked at the ranking (position in the scoring
list) of each TK ligand proposed by the seven scoring
functions from the three independent docking poses
(Figure 4). FlexX and Pmf scores were found to be the
most robust on average. Chemscore and Fresno, two
related scoring functions, provided very disappointing
rankings from Dock and Gold poses. Score rankings
were also rather poor when used in combination with
FlexX and Gold poses. It seems rather difficult to
explain the performance of each scoring functions with
regard to the specific terms they enclose. Scoring
functions with rather similar terms (notably a strong
directional H-bonding term, e.g., FlexX, Chemscore,
Fresno) do not perform equally well. The good perfor-

Figure 1. HSV-1 thymidine kinase ligands. The abbreviations
are as follows: dT, deoxythymidine; idu, 5-iododeoxyuridine;
hpt, 6-(3-hydrody-propyl-thymine); ahiu, 5-iodouracil anhy-
drohexitol nucleoside; mct, (North)-methanocarba-thymidine;
hmtt, (6-[6-hydroxymethy-5-methyl-2,4-dioxo-hexahydro-py-
rimidin-5-yl-methyl]-5-methyl-1H-pyrimidin-2,4-dione; acv, ac-
iclovir; gcv, ganciclovir; pcv, penciclovir. The structure of one
ligand (dhbt) is currently not publicly available.

Table 1. Rms Deviations (non hydrogen atoms, in Å) of
Docked TK Ligands (top solution of each docking tool) from the
X-ray Posea

docking method

ligand Dock FlexX Gold

dTb 0.82 0.78 0.72
iduc 9.33 1.03 0.77
ahiud 1.16 0.88 0.63
dhbte 2.02 3.65 0.93
hptf 1.02 4.18 0.49
hmttg 9.62 13.30 2.33
mcth 7.56 1.11 1.19
acvi 3.08 2.71 2.74
gcvj 3.01 6.07 3.11
pcvk 4.10 5.96 3.01

a X-ray pose means here ligand coordinates merged into the
reference protein structure (pdb code: 1kim) after fitting protein
backbone atoms. b pdb code:1kim. c pdb code: 1ki7. d pdb code 1ki6.
e pdb code:1e2p. f pdb code:1e2m. g pdb code:1e2n. h pdb code: 1e2k.
i pdb code: 2ki5. j pdb code: 1ki2. k pdb code: 1ki3. Abbreviations
are identical to that in Figure 1.
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mance of the Pmf scoring function suggests that at least
the true ligands interact through canonical interactions.
Altogether, the most homogeneous results were ob-
served using FlexX as docking tool. However, the
comparison of the best docking/scoring scheme is clearly
in favor of Gold docking and Gold scoring (Figure 5). It
was the only combination for which 100% of true hits
were found among the top 10% scorers. FlexX/Pmf and
Dock/Pmf protocols provided reliable rankings for 70%
of true hits but failed in ranking the remaining 30%.

To see whether ranking failures might be linked to
docking inaccuracies, we plotted rms deviations from

X-ray poses versus ranking obtained for each of the 10
ligands screened by the best three docking/scoring
combinations (Figure 6). Excepting three ligands (idu,
hmtt, mct) for which Dock clearly failed to find a reliable
pose (rmsd above 7 Å) and could therefore not obviously
be ranked among the top scorers, no relationships could
be found between docking and ranking accuracies
(Figure 6). For example, the natural substrate (deoxy-
thymidine) was well docked and ranked by the three
best combinations (Dock/Pmf, FlexX/Pmf, Gold/Gold).

Figure 2. Estrogen receptor (ERR) antagonists.

Figure 3. Rms deviations (in Å) of docked TK true hits from
their X-ray pose. Docked structures were fitted to the protein-
bound X-ray structure of each true hit merged into the
reference protein coordinates (pdb code 1kim). Figure 4. Ranking of TK ligands using a combination of three

docking programs and seven scoring functions: (A) Dock
docking, (B) FlexX docking, (C) Gold docking.
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However, penciclovir was poorly docked by Dock (rmsd
) 4.1 Å) and FlexX (rmsd ) 5.92 Å) but nevertheless
well ranked using Pmf scoring (ranked 7th and 27th,
respectively). As expected, a good docking does not
guarantee an accurate scoring. Gold docked dhbt much
better than penciclovir (rmsd of 0.93 and 3.01 Å,
respectively) but ranked dhbt worse than penciclovir
(102nd and 70th, respectively). Furthermore, filling the
active site with water particles significantly improved
the FlexX docking of dhbt (rmsd of 0.70 Å vs 3.65 Å for
standard FlexX docking) but did not ameliorate FlexX
ranking, either (24th versus 18th). One clear explana-
tion of these discrepancies apart from well-known
scoring function deficiencies (poor treatment of entropic
components to the binding free energy, scoring of single
conformations and not thermodynamic ensembles) is
that the scoring of misdocked molecules (purine com-
pounds in the present case) is generally overestimated
for bigger ligands (Figure 6). Hence most of the mol-
ecules misdocked but properly ranked are purine com-
pounds whereas molecules accurately docked but poorly
ranked are all pyrimidine analogues (Figure 6).

Thus, it not surprising that no scoring function,
whatever the docking method, was able to predict

absolute binding free energies for the set of known TK
ligands (Table 2). In most of the cases, the observed
standard error in prediction was about 6-7 kJ/mol. Only
the Gold/Gold combination gave a correlation with some
statistical value (predictive r2 ) 0.507, standard error
of prediction: 4.90 kJ/mol). This is the same combination
which already gave the best ranking (Figure 4C). A
simple reason explains the poor quantitative predictions
observed in the present study. Water molecules have
been retrieved from the TK active site. However, they
mediate ligand binding, and their coordinates depend
on the type of the bound ligand (purine vs pyrimidine
compounds). It is interesting to notice that quantitative
predictions are much better when two sets of protein
coordinates are used with their corresponding crystal
water molecules (purine-bound TK, pyrimidine bound
TK; r2 ) 0.98, n ) 6). Quantitative predictions being
out of reach in the present study does not preclude the
interest in virtual screening as a lead finding compu-
tational technique. Comparing the distribution of dock-
ing energies for active and random compounds clearly
demonstrates that it is possible to partly discriminate
true hits from random ligands (Figure 7). Using Dock
and FlexX poses ranked by the Pmf method (the most
accurate in both cases, Figure 4), there is still a
significant overlap for at least 30% of true hits between
active and random compounds (Figure 7A,B). Consider-
ing that the present target is really a very hard test,
we can consider that the number of observed false
positives (about 20%) is low enough for ensuring a
successful computational screening of potential TK
ligands even with Dock and FlexX docking tools. Using
the best possible combination (Gold/Gold, Figure 7C), a
good discrimination of active from random compounds
could be reached with as few as 10% false negatives.

We next looked at hit rates (percentage of known true
hits) among the top 5% scorers, which would correspond
to a reasonable number of molecules (2500) to test
experimentally if we would have screened a 50 000-
compound virtual library. Confirmed hit rates from the
best scoring function associated to each docking tool
ranged between 10 and 12% for all three possible
combinations (Figure 8). Using a consensus scoring out
of two scoring functions, hit rates were raised signifi-
cantly up to 24%. On average, the combined use of FlexX
and Pmf scoring functions was found to be the most
robust (Figure 8). Interestingly, the observed enriched
hit rates were shown to be rather independent of the
docking tool used (especially after single scoring),
though Gold was shown to clearly outperform Dock and
FlexX in terms of docking accuracy. We can then
conclude, at least for the present case, that scoring is

Figure 5. Comparison of the three docking methods each with
its best performing scoring function (TK ligands).

Figure 6. Ranking versus rms deviations from X-ray pose
for TK ligands screened with the three best docking/scoring
combinations. The lines delimit a confidence area in which
docking and ranking accuracies are correlated.

Table 2. Prediction of Absolute Binding Free Energies from
Docked Poses

Dock pose FlexX pose Gold pose

scoring function r2 a sb r2 s r2 s

Chemscore 0.117 6.57 0.096 6.65 0.125 6.54
Dock 0.231 6.13 0.361 5.59 0.194 6.28
FlexX 0.061 6.77 0.040 6.85 0.199 6.26
Fresno 0.212 6.21 0.108 6.61 0.387 5.47
Gold 0.024 6.91 0.354 5.61 0.507 4.90
Pmf 0.039 6.85 0.041 6.85 0.018 6.93
Score 0.047 6.83 0.228 6.15 0.141 6.48

a Correlation coefficient after multiple linear regression. b Stan-
dard error, kJ/mol.
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more important than docking in database screening. It
should be noted that not all possible consensus scoring
combinations were studied here as many scoring func-
tions (Fresno, Score, Dock, Chemscore) could not iden-

tify any true TK ligand in the top 5% scorers. It is thus
of crucial importance to first determine on a reduced
dataset which combination provides the best hit rates
before screening a large chemical database. Unless
additional scoring functions are directly implemented
in docking programms,50 one usually restrains rescoring
to the top scorers identified by the native scoring tool.
This means that database docking with Dock, FlexX,
and Gold, and selection of the top 5% scorers, would
have missed at least 9, 4, and 5 out of the 10 true hits,
respectively. We would then advise the use of FlexX or
Gold for searching a large library for potential TK
ligands.

Virtual Screening of ERR Antagonists. We next
tested our docking/scoring strategy using a target more
suited for virtual screning. The ERR receptor was
selected for several reasons: (i) its binding cavity is less
opened to solvent than that of TK, (ii) the topology of
its active site is less dependent on the nature of the
bound ligand, (iii) all selected true hits bind in the low
nanomolar range, and (iv) ERR has already been suc-
cessfully used as virtual screening target using a Tabu
search (TS)-based flexible docking method.31

Starting from the coordinates of the ERR receptor in
complex with 4-hydroxy-tamoxifen (pdb code: 3ert), a
1000-compound database containing 10 known ERR
antagonists (Figure 2) was docked and scored as previ-
ously described. The docking accuracy of each docking
tool could only be assessed for the two ligands (raloxifen,
4-hydroxy-tamoxifen) for which a ERR-bound X-ray
structure was available.46,51 As for TK ligands, the best
docking poses were obtained using the GA-based Gold
algorithm (Figure 9). FlexX also performed well, whereas
Dock failed to find a reliable pose for raloxifen. Again,
no clear relationships between docking and ranking
could be found. Although raloxifen was clearly mis-
docked by Dock, this ligand still belongs to the top
scorers of the Dock energy list (Figure 9).

Rescoring all successfully docked ligands with six
additional scoring functions showed clear docking/

Figure 7. Discrimination of TK true hits from random ligands
using the following docking/scoring combinations: (A) Dock/
Pmf, (B) FlexX/Pmf, (C) Gold/Gold. Results are indicated as
percentages of the total number of ligands for which a docking
solution had been found (Dock: 10 true hits, 774 random
ligands; FlexX: 10 true hits, 488 random ligands; Gold: 10 true
hits, 927 random ligands). Please notice that Pmf scores of
true hits should be as low as possible whereas Gold fitness
scores should be as high as possible.

Figure 8. Hit rates (% of known TK ligands) among the top
5% scorers after single or consensus scoring.

Figure 9. Overlay of X-ray and docked poses for two ERR
antagonists, raloxifen (left panel) and 4-hydroxy-tamoxifen
(right panel). Docked structures were fitted to the protein-
bound X-ray structure merged into the reference protein
coordinates (pdb code: 3ert). The number in parentheses
indicates the rms deviation from the X-ray pose and the rank,
respectively. The following color coding was used: X-ray pose,
white carbon atoms; Dock pose, green carbon atoms; FlexX
pose, yelow carbon atoms; Gold pose: cyan carbon atoms.
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ranking trends. Obtained rankings of true hits were
generally much higher than those previously observed
for TK ligands. Two out of the seven scoring functions
performed well when ranking Dock poses (Figure 10A).
The number of favored scoring functions was raised to
five for FlexX and Gold poses (Figure 10B,C). Dock
interaction energies provided the best ranking, what-
ever the docking program (Figure 10). Its force field
based nonbonded van der Waals term mirrors rather
well the apolar protein-ligand interactions. Surpris-
ingly, the two most robust scoring functions for screen-
ing TK ligands (FlexX and Pmf) were among the poorest
in the present case (Figure 10A-C). Dock and Score
rankings were clearly the best when rescoring Dock
poses (Figure 10A). Using FlexX poses, all scoring
functions but FlexX and Pmf performed also well. In
the latter cases, the same two ligands (ICI-164384, EM-
343) were poorly ranked. The ICI compound was ap-
parently well docked by FlexX in the apolar binding
pocket, with the exception of the long acyclic side chain.
The EM compound was clearly misdocked. By looking
at the rigidified analogue (LY-357489) which was well
docked, one could find a plausible explanation of the
observed FlexX failure to dock the EM ligand. Its
phenolic group has clearly rotated around the Csp2-C.ar
bond with respect to the conformationally rigidified
naphthol analogue (LY-357489) and could not be ac-
commodated in the apolar ER pocket. For one ligand
(RU-58668), no docking solution could be found using
FlexX. It is interesting to notice that both of the
misdocked compounds lack the canonical basic side
chain found in most of ER antagonists. As for TK
ligands, the Gold poses led to the best ranking of known
ERR antagonists (Figure 10C). Using a Gold docking/
Dock scoring scheme, 9 out of 10 true hits were ranked
among the top 2% scorers (Figure 11).

Whatever the docking method, the virtual screning
of ER ligands led to a clear discrimination of true hits
from random ligands (Figure 12A-C). About 20% of
false positives still remain using a Dock ranking/Dock
docking combination (Figure 12A) but all true hits
belong to the top scorers. Using FlexX poses, two known

ER ligands overlapped the random pool (Figure 12B)
but very few random compounds (about 1.5%) got a high
score. The distinction between active and random
compounds is even better using Gold poses (Figure 12C)
as the rate of false negatives and false positives were
only 1.6 and 10%, respectively. Averaged hit rates
among the top 5% scorers were higher and less depend-
ent on the scoring function with FlexX and Gold poses
than with Dock orientations (Figure 13). Averaged
enrichement factors in true ER ligands among the top
5% scorers (factor 13) obtained with a single scoring
function from FlexX or Gold poses were rather similar
to that recently reported by a different tabu search-
based method.31 Using a consensus list from either two
or three scoring functions led to much higher hit rates,
up to 70%. This is a remarkable result if one considers
that all seven scoring functions have been taken into
account for averaging, and not only the top combination
as previously shown for TK ligands.

Conclusions

For the two targets described herein, Gold poses were
clearly shown to be the most suitable for virtual screen-
ing. Interestingly, standard parameters of the three
docking tools performed rather well for both targets.
However, scoring seems to predominate docking ac-
curacy as no relationhip between docking and ranking
could be found in the present study. As predicting
experimental binding free energies with a high accuracy
is still out of reach, it is of utmost importance to select
a scoring function able do discriminate active from
random compounds. Our results demonstrate that pre-
dicting which scoring function would perform the best
is a very difficult task. Two scoring functions (Pmf,
FlexX) that performed well in one case (TK screning)
were found among the poorest in another case (ER
screening). Although general rules cannot be drawn due
to the limited number of virtual screening targets used
in the current study, FlexX and Pmf scores tend to
perform well for a highly polar active site (TK) whereas
Dock scores were found to be the most reliable for the
apolar ER active site. However, finding out a single
scoring function to rank virtual hits is not a major
concern as consensus scoring definitely outperforms
single scoring whatever the target and the docking tool
used. Thus, we propose a two steps protocol for optimiz-

Figure 10. Cumulative ranking of ER antagonists using a
combination of three docking programs and seven scoring
functions: (A) Dock docking, (B) FlexX docking, (C) Gold
docking.

Figure 11. Comparison of the three docking methods each
with its best performing scoring function (ER ligands).
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ing the docking/scoring combination: (i) screening of a
reduced dataset (1000 compounds) containing a few
known true hits to find out the best docking/consensus
scoring combination, and (ii) screening the full library
with the optimized docking/scoring scheme.

This study shows that virtual screening of chemical
databases is a powerful method for finding new hits and
prioritizing ligand synthesis and experimental testing.
Using consensus scoring, a reduced virtual dataset
covering 0.5-1% of the full library, enriched by a factor
20 to 70, and containing 50 to 90% of all true hits could
be designed, even for the difficult TK target where
induced fit as well as water intercalation plays a
significant role in ligand binding. However, because
predicting the correct pose and, more importantly, the
experimental binding free energy is much more difficult,
it still cannot be considered as a general lead optimiza-
tion method.
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