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A simple and fast free energy scoring function (Fresno) has been developed to predict the binding
free energy of peptides to class I major histocompatibility (MHC) proteins. It differs from existing
scoring functions mainly by the explicit treatment of ligand desolvation and of unfavorable
protein-ligand contacts. Thus, it may be particularly useful in predicting binding affinities
from three-dimensional models of protein-ligand complexes. The Fresno function was
independently calibrated for two different training sets: (a) five HLA-A*0201-peptide structures,
which had been determined by X-ray crystallography, and (b) three-dimensional models of 37
H-2Kk-peptide structures, which had been obtained by knowledge-based homology modeling.
For both training sets, a good cross-validated fit to experimental binding free energies was
obtained with predictive errors of 3-3.5 kJ/mol. As expected, lipophilic interactions were found
to contribute the most to HLA-A*0201-peptide interactions, whereas H-bonding predominates
in H-2Kk recognition. Both cross-validated models were afterward used to predict the binding
affinity of a test set of 26 peptides to HLA-A*0204 (an HLA allele closely related to HLA-
A*0201) and of a series of 16 peptides to H-2Kk. Predictions were more accurate for HLA-A2-
binding peptides as the training set had been built from experimentally determined structures.
The average error in predicting the binding free energy of the test peptides was 3.1 kJ/mol.
For the homology model-derived equation, the average error in predicting the binding free
energy of peptides to Kk was significantly higher (5.4 kJ/mol) but still very acceptable. The
present scoring function is thus able to predict with a good accuracy binding free energies
from three-dimensional models, at the condition that the backbone coordinates of the MHC-
bound peptide have first been determined with an accuracy of about 1-1.5 Å. Furthermore, it
may be easily recalibrated for any protein-ligand complex.

Introduction

With the ever increasing number of protein structures
available at the three-dimensional level, predicting the
binding free energy of a small molecule to the active
site of a protein has become one of the major challenges
in computational chemistry aimed at lead finding or
optimization. Basically, one has to find a compromise
between the accuracy of the method to choose and the
number of ligands to examine.1 On one hand, very
accurate free energy differences may be obtained by
comparing the binding of a pair of ligands to a common
protein by free energy perturbation techniques.2 The
price to pay is rather CPU-intensive calculations, the
difficulty to compare more than two ligands, the re-
stricted nature of the change to perform (small chemical
change), and the difficulty to predict absolute binding
free energies3,4 although some progresses have been
recently reported.5 On the other hand, binding free

energies may be estimated from atomic coordinates by
means of simple scoring functions.6-9 These free energy
estimates are less accurate (prediction error of about
7-8 kJ/mol, for high-resolution crystal structures) but
may be obtained rather quickly for thousands of poten-
tial ligands. Between these two extremes, force-field,10-13

3D-QSAR,14-16 and continuum methods17,18 may be
applied to a series of 10-20 related ligands for estimat-
ing binding free energy differences.

Free energy scoring functions, although not always
very accurate, are particularly interesting in prioritizing
hits obtained from de novo design or 3D database
searching. However, they face four major problems: (i)
correct estimation of the entropic contribution to the
absolute binding free energy, (ii) reliable estimate of
solvation/desolvation processes, (iii) lack of repulsive
terms, and (iv) a questionable application to three-
dimensional molecular models.

Up to now, free energy scoring functions have been
applied with reasonable success to reproduce experi-
mental binding affinities from X-ray coordinates of
protein-ligand complexes.6-9,16 Very few predictions
have indeed been made from three-dimensional models9

as one has to tackle a two-dimensional problem: docking
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and scoring. Therefore, there is a need for a flexible and
fast scoring function in which desolvation energy of the
ligand and unfavorable protein-ligand contacts are
taken into account.

Class I MHC-peptide complexes represent a particu-
larly attractive case for docking and free energy scoring
algorithms. Determining the complete MHC-bound
conformation of an oligomeric peptide (up to nine
residues) is not a trivial problem as the ligand is highly
flexible and the middle part of the peptide (P4 to PC-2,
Pn standing for position n and PC for the C-terminus)
usually zigzags19 or bulges20 out the binding groove
using very different paths. Peptide docking using Monte
Carlo,21 molecular dynamics simulations,22 dynamic
programming,23-25 free energy mapping,26 or threa-
ding27-29 can rather well reproduce the conformation of
the MHC-binding amino acids (rms deviations for
backbone atoms lower than 1 Å) but have more difficul-
ties to represent the middle bulging part (rms deviations
between 1 and 2 Å). Some attempts to reproduce
experimental binding free energy values from MHC-
peptide X-ray structures have been described in the last
five years. Continuum electrostatic calculations may
find the correct ranking but not the absolute binding
free energies.30 Knowledge-based scores based on pair-
wise contacts are only efficient for apolar peptides.28 Up
to now, the best scores have been found for a training
set of four MHC-nonapeptide X-ray structures (1hhg,
1hhi, 1hhj, 1hhk; Table 1) after binding free energy
decomposition into structure-derived atomic contact
energies, electrostatic interactions and backbone con-
formational entropy change.31,32 However, Zhang’s equa-
tion has only been used for four X-ray structures and
its predictive value for molecular models is hypothetical.
Herewith, we present the development a new scoring
function (Fresno) based on previous works of Böhm6,7

and of the Proteus group8,9 as well as its application to
a nontrivial problem: predicting, from three-dimen-
sional models, the absolute binding free energy of polar
and flexible ligands (octa- to decapeptides) to class I
major histocompatibility molecules.

Results and Discussion

Binding to HLA-A2 Alleles: Predicting Binding
Affinities from a Set of Five X-ray Structures. As
class I MHC proteins are structurally unstable in their
free form and need a peptide in order to properly fold,33

there are rather few MHC-peptide complexes for which
a crystal structure is available and where the binding
affinity of the bound peptide is known with accuracy.
The HLA-A*0201 human class I protein is the best

characterized protein as it has been cocrystallized with
at least 10 different peptides, of which the binding free
energy of five of them has been determined experimen-
tally (Table 1). Furthermore, we wished to study the
potential benefit of two novel terms (buried-polar in-
teractions and ligand desolvation) in our binding free
energy estimation with respect to two universal scoring
functions, that described by Böhm6 which we will call
Ludi and the one published by Eldridge et al.8 which
we will call Chemscore.

Using default coefficients6 for each term of the equa-
tion, Ludi largely overestimated the binding affinity of
all five peptides (Table 1) by 11-40 kJ/mol (about 2 to
7 orders of magnitude in binding affinity). This poor
performance (r2

pred ) 0.010, s ) 6.09 kJ/mol) has three
main reasons: (i) As the Fresno estimate should be
applicable to 3D-models, all protein-ligand structures
have been here energy-minimized whereas the proce-
dure described by Böhm for calibrating his scoring
function only involved addition of hydrogen atoms
without any energy relaxation; (ii) the lack of an explicit
treatment of desolvation effects is particularly detri-
mental to the oligomeric peptides studied here; (iii) the
free energy contribution of the two salt bridges, involv-
ing both terminal ends of the peptides with the MHC
binding groove is certainly overestimated. The first Ludi
scoring function that we tested6 cannot distinguish
between buried and water-accessible ionic interactions.
Hence, MHC-peptide salt bridges in the five tested
complexes are all accessible to water.20 It should be
pointed out that the last two points have been recently
addressed by a new version of the Böhm’s function.7 The
first point (minimized vs experimental structures) is still
a matter of debate. However, we feel that energy-
minimized structures are necessary for reliable 3D-
models, especially for the correct positioning of hydrogen
atoms usually missing in X-ray structures but whose
coordinates strongly influence the hydrogen-bonding
score. Furthermore, it reduces the user’s influence on
the starting positions of these hydrogen atoms, even if
a minimized structure may remain close to the starting
one.

Using Chemscore-based default coefficients and pa-
rameters8 (H-bonding, lipophilic, and rotational terms),
a better correlation is found (r2

pred ) 0.522, s ) 4.32 kJ/
mol) because of a better description of electrostatic and
rotational terms for our data set (Table 1). Recalibrating
the Chemscore scoring equation by fitting computed to
experimental data afforded a predictive model (q2 )
0.645, spress ) 4.47 kJ/mol) that could be improved by
addition of either the buried-polar term (q2 ) 0.865, spress

Table 1. Training Set A: 5 HLA-A*0201-Peptide Complexes20

∆Gbind, kJ/mol

peptide PDB code exp.a Ludib Chemscorec Zhangd Fresnoe

TLTSCNTSV 1hhg -37.32 -62.36 -33.12 -32.63 -36.85
FLPSDFFPSV 1hhh -48.45 -72.10 -56.48 -48.56
GILGFVFTL 1hhi -46.94 -57.40 -42.12 -52.30 -47.03
ILKEPVHGV 1hhj -37.60 -78.32 -43.09 -42.69 -38.96
LLFGYPVYV 1hhk -45.48 -77.92 -57.28 -45.10 -45.57

a Experimental values have been taken from the literature.27,68 Reported IC50 values were assumed to be similar to equilibrium
dissociation constants KD as the concentration [L] of the radiolabeled ligand in the unbound state is much lower than the equilibrium
dissociation constant KD of the labeled ligand in the binding assay. Thus, ∆Gexp ≈ RT ln(IC50). b Measured with InsightII, release 970
(MSI, San Diego, CA). c Measured from Fresno, using H-bond, lipophilic, and rotatable bond terms as described for Chemscore.8 d Taken
from Zhang et al.32 e Predicted values using the cross-validated model (see text).
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) 2.78) or the desolvation score (q2 ) 0.918, spress ) 2.14
kJ/mol). When both terms are added to the final
regression equation (eq 1), a still good predictive model
is obtained with a correct ranking of all five peptides
(Figure 2a).

This scoring scheme (see eq 1 and Table 1) was
selected for further predictions. Interestingly, the con-
tribution of each term to the predicted binding free
energy is physically reasonable. The highest contribu-
tions to the binding free energies were given for the
lipophilic (from -20 to -30 kJ/mol) and the buried-polar
(about +10 kJ/mol) terms. This observation is in agree-
ment with previous reports suggesting the predominant
role of hydrophobic interactions in HLA-A2-peptide
interactions.30,34 In contradiction to a previous report,6
the inclusion of explicit desolvation energies was shown

to significantly improve the model. The desolvation term
contributes here to about +5 kJ/mol to the total binding
free energy. H-Bonding and rotational contributions
were in the present equation very weak ((0.5 kJ/mol).
Accordingly, error limits on the regression coefficients
were higher for these two terms (0.012 for R, 0.011 for
γ) than for LIPO, BP, and DESOLV coefficients (0.04
for â, 0.08 for δ, 0.014 for ε). However, it is somewhat
surprising that one should be able to derive a predictive
model of so high quality based on such a limited training
set. Therefore, its real predictive value was checked on
a test set of 26 nonapeptides binding to the class I MHC
molecule, HLA-A*0204. The binding free energy to the
HLA-A*0204 allele was calculated by Fresno and in
parallel tested by direct experimentation. We reasoned
that it should be possible to use the HLA-A*0201
training set in the prediction of binding to HLA-A*0204
as the latter only varies from the HLA-A*0201 allele
by a single point mutation in the binding groove.35 This
is supported by the finding that self-peptides eluted
from the two related alleles are very similar.36 However,
calculating reliable free energy scores from 3D-models
requires first an accurate docking of the ligand to its
host protein. For class I MHC-binding ligands, the

Figure 1. Flowchart of the methods used for quantifying and
predicting the free energy of binding of peptide ligands to a
class I MHC protein (see Experimental Section for computing
protocols): (a) homology modeling of the MHC protein; (b)
knowledge-based building of MHC-anchor residues (P1-P3,
PC-1-PC); (c) knowledge-based Loop searchsbuilding the P4-
PC-2 sequence; (d) merging the peptide into the MHC binding
groove; (e) energy-minimization (EM) of the peptide, EM of
the MHC-peptide complex, 100 ps simulated annealing (SA)
of the MHC-bound peptide, EM of the last SA conformer; (f)
Fresno; (g) extracting coordinates of the peptide from the
MHC-peptide complex; (h) DelPhi; (i) multiple linear regres-
sion; (j) prediction of binding free energies for test sets.

Figure 2. Predicted versus experimental binding free ener-
gies for HLA-A2-binding peptides: (a) cross-validated fit to
experimental data (see Table 1); (b) prediction of a test set of
26 peptides. Outliers, indicated by up triangles, have been
discarded from the regression analysis.

∆Gbind ) -33.614 - 0.014HB - 0.076LIPO +
0.017ROT + 0.021BP + 0.026DESOLV (1)

(q2 ) 0.895, spress ) 3.448, n ) 5)
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docking step may be particularly difficult for two
reasons: (i) the ligand is a highly flexible oligomeric
peptide, (ii) one-half of the bound ligand bulges out of
the MHC binding site in order to further interact with
a T-cell receptor.37-39 To validate our docking procedure
(Figure 1, see Experimental Section), we tried first to
reproduce the MHC-bound backbone conformation of all
five reference peptides in their X-ray structure (Table
2). Except for the decapeptide, rms deviations of the
initial docked conformation from the X-ray structure
varies between 0.78 and 1.14 Å (Table 2). Refinement
the protein-bound peptide by simulated annealing did
not dramatically alter the conformation of the bulging
loop (compare the values before and after simulated
annealing refinement, Table 2). The models obtained for
the five complexes were then used to derive the binding
free energy of the reference five ligands, using the
regression derived from the original training set com-
posed of X-ray structures. Again, a very good agreement
was obtained between experimental and predicted bind-
ing free energies (r2

pred ) 0.846, s ) 2.40 kJ/mol). This
good fit demonstrates that the docking and refinement
procedures are able to propose very reliable three-
dimensional models of MHC-peptide complexes. It should
be noted that the bulging part of the bound peptide only
contains auxiliary anchors to the MHC binding groove40

and that a poorer score is obtained by taking only into
account MHC anchoring amino acids for intermolecular
interactions while giving a mean value for the rotational
term (data not shown). However, it is important that
docking does not overemphasize protein-ligand interac-
tions.41 In none of the five complexes remodeled in this
study was the binding free energy of the corresponding
peptide significantly overestimated.

Our docking procedure being validated, we tried to
predict the binding free energy of a series of 26 peptides
to HLA-A*0204 (Figure 2b). The very low standard error
of prediction of this new test set (3.49 kJ/mol) illustrates
the robustness of the training model (r2

pred ) 0.774).
Interestingly, the scoring function was able to correctly
rank the most potent and the weakest binders of the
series. It should be noted that many of the weakest
binders were overestimated by about 5 kJ/mol (Figure
2b). All these peptides bear a negatively charged residue
at the auxiliary anchor position P3. Asp and Glu amino
acids at P3 are known to disfavor binding,40 by a
probable electrostatic repulsion with the aromatic upper
part of the pocket D in the MHC binding cleft.42 The
100 ps simulated annealing refinement of these peptides
was, however, unable to totally expel the P3 side chain

from the binding groove, thus overestimating the bind-
ing free energy of this small subset. Totally hydrophobic
peptides were also correctly ranked among the most
potent binders. To check whether Fresno was able to
correctly score very low binding peptides presenting
another HLA specificity, we tried to rank a HLA-
B*2705-binding peptide (RRIKAITLK) whose sequence
does not share any identity with known HLA-A2-
binding ligands44 and whose structure has been modeled
in the electron density map of the HLA-B*2705 allele.43

The scoring function was indeed able to predict a very
poor binding for this peptide (∆Gbind ) -18.51 kJ/mol,
Ki ) 560 µM).

As a maximal error limit, we chose a value of 7.5 kJ/
mol, close to the standard deviation of two known
scoring functions.6-8 If the discrepancy between experi-
mental and predicted binding free energies was higher
than this cutoff, the corresponding ligand was defined
as an outlier. Up to now, only three peptides could not
have been properly handled by our docking/scoring
protocol (Figure 2b). Their binding free energies were
overestimated by 10-18 kJ/mol. The binding affinity of
these three outliers is unexpectedly weak, with regard
to their sequence that perfectly fulfills the HLA-A*0204
binding motif.36 They all share a small hydrophobic side
chain at P2 and P9 and an aromatic amino acid at P3,
three favored features for a proper binding to HLA-
A*0204. Therefore, it is very difficult to explain the
weak binding affinity of these three ligands. It should
be noticed that scoring the three outliers from residue-
dependent positional coefficients derived from experi-
mental binding affinities was also unsuccessful.47 In-
tramolecular repulsions between adjacent bulky side
chains (P3, P5, and P7) that have already been reported
to affect the bound conformation of MHC ligands,20,45

could be an issue for the three outliers. However, one
of the reference peptide (1hhk, Table 1) also presents
bulky side chains at these three positions but binds as
expected to HLA-A*0201. The only way to reproduce
with less discrepancies the experimental binding affinity
values for this restricted set was to expel the P3 side
chain from its binding pocket D, although there is no
experimental support for this hypothesis. As the ligand
strain energy was not taken into account here, it is also
possible that the observed discrepancies may be related
to distortion of the peptide 3D-structure upon binding.
Thus, we feel that wrong predictions are probably not
attributable to the free energy scoring function itself but
to the inability to correctly predict reliable three-
dimensional structures for the corresponding complexes.

Binding to the H-2Kk Protein: Predicting Bind-
ing Affinities from Three-Dimensional Models.
Relating binding affinities to X-ray coordinates by a free
energy decomposition and using the derived free energy
equation for quantitative predictions is an absolute
prerequisite for any reliable free energy scoring func-
tion. However, in many cases, experimentally deter-
mined 3D structures of protein-ligand complexes are
missing. Thus, the scoring function should also perform
well when the training set is composed of three-
dimensional molecular models. As class I MHC proteins
share a common three-dimensional fold and the peptide
binding mode is highly conserved,46 homology modeling
of any MHC-peptide complex is feasible. To probe our

Table 2: Predicting the Backbone Conformation and the
Binding Free Energy of 5 HLA-A*0201-Binding Peptides

∆Gbind, kJ/mol
peptide

PDB
code loopa rmsd, Åb exp model

TLTSCNTSV 1hhg 1prt: 90-93 1.04, 1.27 -37.32 -36.37
FLPSDFFPSV 1hhh 1ajs: 362-366 1.59, 1.82 -48.45 -45.09
GILGFVFTL 1hhi 1gig: 10-13 1.14, 0.46 -46.94 -44.55
ILKEPVHGV 1hhj 1prt: 90-93 0.93, 0.87 -37.60 -39.82
LLFGYPVYV 1hhk 1bnc: 3-6 0.78, 1.44 -45.48 -45.92

a Sequence used to build the P4-PC-2 loop: 1prt, D-3-phospho-
glycerate deshydrogenase; 1ajs, aspartate aminotransferase; 1gig,
hc19 Igg1 Fab fragment; 1bnc, biotin carboxylase. b Root-mean-
square deviations of peptide backbone atoms from the X-ray
coordinates, before and after simulated annealing of the MHC-
bound peptide (see Experimental Section).
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scoring function on 3D-models, we then used a training
set of 37 related H-2Kk-binding octapeptides (Figure 3a).
H-2Kk is a murine class I MHC protein with a well-
defined peptide binding motif47 but for which no X-ray
structure currently exists. The training set is composed
of 37 peptides (sequence: Phe1-Xaa2-Ser3-Thr4-Gly5-
Asn6-Leu7-Xaa8) where both main anchor positions (P2
and P8) to Kk have been systematically varied.48 All
models were built by homology modeling, and new
coefficients were derived by multiple regression (eq 2).

An excellent cross-validated fit to experimental bind-
ing free energy values could again be obtained (Figure
3a). Surprisingly, it was necessary to discard the lipo-
philic interaction score from the regression analysis in
order to get a physically reasonable coefficient for other
terms. In fact, the addition of lipophilic interactions not
only decreased the q2 value but was also found to
disfavor binding (â ) +0.021). The best combination was

found when these lipophilic interactions were discarded
(Figure 4). The suggestion that electrostatic interactions
drive the binding of peptides to H-2Kk (H-bond contri-
bution up to -60 kJ/mol) is supported by experimental
positional-scanning combinatorial libraries47 which shows
that negatively charged residues are preferred at the
major anchoring residue (P2). However, it should be
pointed out that the H-bonding score, alone, was not
able to give any reliable correlation (Figure 4). The
H-bond coefficient (R ) -5.44 kJ/mol) has a much
higher absolute value than that of the previous equation
(Table 1) and is closer to that reported by Böhm and
Eldridge for totally different training sets.6,8 The buried-
polar term contributed to about +35 kJ/mol to the total
binding free energy whereas rotational and desolvation
terms had a lower impact (about +5 kJ/mol) on the final
score.

Using the equation derived from the HLA-A2 training
set, no correlation could be obtained, thus showing the
necessity to recalibrate the scoring function for each new
application. The predictivity of the H-2Kk model was
further examined for a test set of 16 peptides, a mixture
of octa- and nonameric ligands (Figure 3b). After build-
ing the three-dimensional models as previously de-
scribed, a good correlation was found for the test set
(r2

pred ) 0.698, s ) 5.33 kJ/mol, Figure 3b). The error of
prediction is higher than that obtained from the HLA-
A2 test set (s ) 3.49 kJ/mol) and probably reflects more
uncertainties in the three-dimensional coordinates of
the Kk-peptide models. Furthermore, the path followed
by peptides in the Kk binding groove is restrained by
the presence of two bulky side chains in the middle of
the binding cleft (Arg97, Arg155). Therefore, the predicted
free energies are much more sensitive to the sequence
and the conformation of the bulging part of the peptide
than for HLA-A2-binding peptides. This structural
consideration may explain why more outliers (com-
pounds for which |∆Gexp - ∆Gpred| > 7.5 kJ/mol) were

Figure 3. Predicted versus experimental binding free ener-
gies for H-2Kk-binding peptides: (a) cross-validated fit to
experimental data; (b) prediction of a test set of 16 peptides.
Outliers, indicated by up triangles, have been discarded from
the regression analysis.

Figure 4. Influence of the regression terms on the predictivity
of the H-2Kktraining model: (A) H-bonding only; (B) H-bonding
and lipophilic scores; (C) H-bonding, lipophilic, and rotational
scores; (D) H-bonding, lipophilic, rotational, and buried-polar
scores; (E) H-bonding, lipophilic, rotational, and desolvation
scores; (F) H-bonding, lipophilic, rotational, buried-polar, and
desolvation scores; (G) H-bonding, rotational, and buried-polar
scores; (H) H-bonding, rotational, and desolvation scores; (I)
H-bonding, rotational, buried-polar, and desolvation scores. q2

and spress values were obtained by a leave-one-out (LOO) cross-
validation analysis.

∆Gbind ) -35.596 - 5.440HB + 0.344ROT +
0.063BP + 0.021DESOLV (2)

(q2 ) 0.777, spress ) 3.157, n ) 37)
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observed in the Kk series (Figure 3b). As described for
HLA-A2-binding ligands, it is likely that errors describ-
ing the bound conformation of the middle part (P4 to
PC-1) of the Kk-bound peptides are partly responsible
for the observed discrepancies.

Conclusion

The present report is to the best of our knowledge one
of the very first aimed at a quantitative prediction of
absolute binding free energies from three-dimensional
homology models. It should be stated that we did not
want to develop a universal scoring function but to
optimize a precise equation for class I MHC-binding
peptides. The explicit treatment of unfavorable protein-
ligand contacts by a simple distance-based function is
particularly well suited for molecular models where
repulsive forces between the host protein and its ligand
can be exerted. Estimation of ligand desolvation by a
continuum electrostatic method allows the study of polar
ligands of peptidic nature. Docking, refinement, and
binding free energy estimation can be partly automated
and are fast enough (about 30 min per MHC-nonapep-
tide complex on a R5000 SGI O2 workstation) to be used
on a much larger scale for scanning potential MHC-
binders and T-cell epitopes from protein amino acid
sequences.49 It has the main advantage over neural
networks50,51 or experimentally derived position-de-
pendent coefficients47,52 to require very few experimen-
tal data for training and is applicable to any protein-
ligand complex once the scoring equation has been
recalibrated.

Experimental Section

Analysis of Peptide Binding. This was performed es-
sentially as previously described.47 Briefly, MHC molecules
were affinity-purified from appropriate cell lines. The binding
of a radioiodinated indicator peptide could be determined by
incubating the MHC molecules with the labeled peptide for
48 h at 18 °C followed by a gel filtration size separation of
free and MHC-bound peptide and measuring free vs bound
peptide by gamma spectrometry. Preliminary experiments
determined the concentration of MHC needed to obtain 15-
25% binding, thus avoiding ligand depletion. The binding of
all other test peptides was subsequently determined by adding
increasing concentrations of the peptide in question to the
reaction mixture thereby competing with the labeled peptide
for binding. The concentration of test peptide needed to effect
50% inhibition (the IC50, an approximation of the KD) was
interpolated. Peptides were synthesized by a standard FMOC
chemistry strategy, and peptide purity and identity were
ascertained by HPLC and mass spectrometry.

Preparation of 3D-Binary Databases. Three-dimen-
sional binary databases were produced from X-ray structures
of class I MHC proteins and MHC-bound peptides using the
mkprodat utility of the SYBYL 6.4 package (TRIPOS Assoc.,
Inc., St. Louis, MO). Altogether, 11 class I MHC proteins (HLA-
A2.1, HLA-Aw68, HLA-B8, HLA-B27, HLA-B35, HLA-B53,
H-2Db, H-2Dd, H-2Kb, H-2Ld, H-2M3) and 29 class I MHC-
bound peptides (7 HLA-A2.1-binding, 1 HLA-Aw68-binding,
5 HLA-B8-binding, 1 HLA-B27-binding, 1 HLA-B35-binding,
2HLA-B53-binding, 2Db-binding, 1 Dd-binding, 5 Kb-binding,
3 Ld-binding, 1 H-2M3-binding) were extracted from the
Protein Data Bank53 and encoded in two separate databases
which will be further used to build by homology all MHC-
peptide models studied here.

Coordinates Setup: X-ray Structures. X-ray structures
of HLA-A*0201 in complex with 5 different peptides (Table 1)
were taken in the first training set. After extracting the crystal
coordinates from the Protein Data Bank, hydrogen atoms were

added using the SYBYL BIOPOLYMER module. Only the
antigen-binding domain (residues 1-182) was used in the
calculations.54 Caution was given to polar hydrogen atoms in
order to optimize intra- and intermolecular hydrogen bonds.
Hydrogen atoms were then energy-minimized by 100 steps of
steepest descent using the Cornell force-field55 of the AM-
BER5.0 package.56 As the minimizations were performed in a
vacuum, a distance-dependent dielectric constant (ε ) 4r) was
used, with a twin-cutoff (10-15 Å).

Coordinates Setup: 3D-Models. A 3D-model of the HLA-
A*0204 protein was obtained from the X-ray structure of HLA-
A*0201 (PDB code: 3hla) by mutating a single residue (Arg97

to Met) in the antigen-binding domain. The rotameric state of
Met97 was assigned according to HLA-B*5301 (PDB code:
1a1m) after searching the MHC protein binary database for
this side chain at position 97. Hydrogen atoms were then
added and energy-minimized following the above-described
procedure. The H-2Kk protein was built by homology to the
X-ray structure of H-2Kb under a previously described proce-
dure.57

Whatever the MHC protein, the bound peptide was built in
a two-step procedure. Main MHC anchors (P1, P2, P3, PC-1, PC)
were first constructed by homology to the most similar HLA-
A*0201-bound peptides for which a X-ray structure has been
described (PDB codes: 1hhg, 1hhh, 1hhi, 1hhj, 1hhk, 1a9k,
2clr) or to the Kk-bound conformation of the Influenza He-
magglutinin peptide, Ha255-262 (FESTGNLI, one-letter code),
for which an experimentally validated model has already been
described.57 Rotameric states of these side anchoring chains
were assigned from the peptide binary database. For example,
the rotameric state of an arginine at P1 was similar to that
found for the same amino acid located at the same position in
the PDB entry 2vaa. As the conformation of the MHC-binding
part is independent of the peptide sequence,20 we are pretty
confident about the conformation of these MHC anchors. The
remaining middle part of the peptide (P4 to PC-2) may zigzag19

or bulge20 out the binding groove using very different paths
within the binding groove. Thus, this part was built as a loop
connecting positions P3 to PC-1, using the loopsearch utility of
SYBYL. In this procedure, a set of 837 high-resolution X-ray
structures were searched for a loop of similar length and
presenting a similar distance between CR atoms of the residues
delimiting the loop window. Twenty-five loops were selected
and clustered into families using a 1.0 Å rms deviation cutoff
for backbone coordinates. The loop from the most populated
family that shows the highest identity to the target sequence
was further selected for insertion. Caution was particularly
given to the presence or not of proline residues in the loop
sequence. If the target sequence did not contain any proline,
proline-containing loops were excluded from the loop search.
If the target sequence contained a proline at position Px, only
Prox-containing loops were extracted. After loop insertion, side
chains were automatically added assuming an extended
conformation and quickly refined to the closest minimum by
a short conformational scan in order to eliminate steric bumps
with the binding groove.

The MHC-bound peptide and the whole MHC-peptide
complex were successively relaxed by 1000 steps of AMBER
conjugate gradient energy minimization. While fixing protein
atoms, the peptide alone was then submitted to a 100 ps
simulated annealing (SA) protocol in order to sample the
broadest possible conformational space. Starting with random
velocities assigned at a temperature of 1000 K, the peptide
was first coupled to a heat bath at 1000 K using a temperature
coupling constant Tτ of 0.2 ps and then linearly cooled to 50 K
for the next 50 ps, while strengthening Tτ to a value of 0.05
ps. During these 100 ps, no protein atom was allowed to move.
As the simulated annealing was performed in vacuo, a
distance-dependent dielectric function (ε ) 4r)58 similar to that
used for molecular docking59 was used. A twin cutoff (10.0,
15.0 Å) was used to calculate nonbonded interactions at every
minimization step and every nonbonded pair list update (10
steps), respectively. The last SA conformer was then finally
relaxed by 100 steps of conjugate gradient energy refinement.
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Regression Terms of the Free Energy Function. As a
first step in the investigation of binding interactions, it is
useful to assign general atom types to all ligand and receptor
atoms. In the present work we adopt the scheme by Eldridge
et al.8 consisting of the four following atom types: lipophilic,
H-bond donors, H-bond acceptors, and non-H-bonding polar
atoms.

For the full definitions of these atom types we refer to
Eldridge et al.8 It should be noted that the metal atoms
discussed by Eldridge et al. have not been applied here. Also,
the H-bond donor/acceptor type is assimilated in the present
investigation to the H-bond donor type because we define
H-bond donor atoms as explicit H-atoms on oxygen or nitrogen.

The terms used in the Fresno scoring function were derived
from the work by Eldridge et al.8 and Böhm,6 namely H-bond
(HB), lipophilic (LIPO), and rotational (ROT) terms. In addi-
tion we considered two extra terms, which we defined as the
buried-polar (BP) and the desolvation (DESOLV) terms (eq 3).

The number of individual terms tried in the present scoring
function was limited to five as we did not want to produce
complex equations with several terms that might be collinear.
The constant K as well as the regression coefficients R-ε are
unknown and will be optimized for each protein-ligand series
by multiple linear regression.

The H-bond term (HB) estimates the favorable contribution
from hydrogen bonds between the ligand and the receptor. We
follow the definition by Böhm,6 which was also adopted by
Eldridge et al.8 (eq 4) where the summation involves all

hydrogen bonds between the ligand and the receptor. In eq 4
the functions g1 and g2 assign full score to H-bonds of ideal
geometry and lower scores to H-bonds deviating from it. g1

and g2 are defined as

In eq 4, ∆r is the deviation of H-bond length H‚‚‚X from the
ideal value of 1.85 Å. Similarly, ∆R in eq 6 is the deviation of
the H-bond angle X′-H‚‚‚X from its ideal value of 180°.
Following Eldridge et al., we make no distinction between ionic
and nonionic hydrogen bonds. In our study, we score H-bonds
between the ligand and crystal water molecules as if they were
H-bonds between the ligand and the receptor.

The lipophilic term (LIPO) estimates the favorable contribu-
tion to binding given by the contacts of lipophilic atoms of the
ligand with lipophilic atoms of the receptor. According to the
definition by Eldridge et al.,8 we calculate the contacts between
all lipophilic atoms l of the ligand, and lipophilic atoms L of
the receptor:

where rlL is the distance between atom l and atom L, and the

function f(r) assigns a score according to the definition

Here, R1 is defined as the sum of the van der Waals radii60,61

of atoms l and L, plus 0.5, and R2 ) R1 + 3, with all distances
in angströms.

A buried-polar term (BP) was added to the set of parameters
used by Eldridge8 and Böhm,6 in an attempt to describe the
unfavorable interactions arising from the contact of polar
atoms with lipophilic atoms between the ligand and the
receptor. Here the polar atoms include H-bond donor and
acceptor atoms, as well as non-H-bonding polar atoms. The
buried-polar term is fashioned after the lipophilic term of eq
7; however, the contacts are calculated between all lipophilic
atoms l of the ligand, and all polar atoms P of the receptor, as
well as between all polar atoms p of the ligand, and all
lipophilic atoms L of the receptor. The term assumes thus the
form

where the function f(r) is defined in eq 8, as it is for the
lipophilic term. Note that this term involves explicitly the non-
H-bonding polar atoms, as well as the H-bonding atoms. As a
consequence, the buried-polar term expands the contribution
of nonlipophilic atoms in this study compared to the previous
description of Eldridge.8 In the latter contribution, the H-
bonding atoms are used in the H-bond term and in the
rotational term (vide infra), and the non-H-bonding polar
atoms are used only in the rotational term.

The rotational term (ROT) estimates the loss of entropy due
to the freezing of rotatable bonds of the ligand upon binding.
A rotatable bond is any bond between sp3-sp3 and sp3-sp2

atoms, excluding bonds in rings and bonds to terminal CH3,
CF3, NH2, or NH3 groups. In the present study we tested the
term proposed by Eldridge et al.,8 as well as the earlier
expression by Böhm6 which is a simple count of rotatable bonds
(acyclic sp3-sp3 and sp3-sp2 bonds). Eldridge’s term is defined
as

where the summation is carried out over the rotatable bonds
r that are frozen upon binding. A bond is defined as “frozen”
if at least one atom on both sides of the bond is in contact
with an atom of the receptor, i.e., at a distance of less than
the sum of the relevant van der Waals radii plus 0.5 Å. Nrot is
the total number of rotatable bonds (frozen and unfrozen), and
the terms Pp(r) and P′p(r) define the fraction (ranging from 0
to 1) of nonlipophilic heavy atoms on either side of the bond r.
The terms Pp(r) and P′p(r) penalize less heavily the lipophilic
fragments on each side of the bond. This feature is essential
to represent realistically the binding of large lipophilic ligands
such as the peptides presented here. We refer the reader to a
lengthy discussion on this subject in the relevant paper.8

The original rotational term proposed by Böhm,6 which is
simply defined as

where Nrot, as in eq 10, is the total number of rotatable bonds.
In our study the two rotational terms of eqs 10 and 11 are
expected to give sizably different estimates, since we are
investigating the binding of peptides with many rotatable
bonds as well as side chains of various lipophilic character.

The desolvation term (DESOLV) is derived by solving the
linear form of the Poisson-Boltzmann equation using the
finite-difference method.62,63 ∆Greac

0 is the corrected self-reac-
tion field component of the protein-ligand electrostatic inter-

∆Gbinding ) K + R(HB) + â(LIPO) + γ(ROT) + δ(BP) +
γ(DESOLV) (3)

HB ) ∑
HB

g1(∆r) g2(∆R) (4)

g1(∆r) ) {1 if ∆r e 0.25 Å
1 - (∆r - 0.25)/0.4 if 0.25 Å < ∆r e 0.65 Å
0 if ∆r > 0.65 Å

(5)

g2(∆R) ) {1 if ∆R e 30°
1 - (∆R - 30)/50 if 30° < ∆R e 80°
0 if ∆R > 80°

(6)

LIPO ) ∑
I,L

f(rlL) (7)

f(r) ) {1 if r e R1
1 - (r - R1)/3 if R1 < r e R2
0 if r > R2

(8)

BP ) ∑
l,P

f(rlP) + ∑
p,L

f(rpL) (9)

ROT ) 1 + (1 - 1/Nrot) ∑
r

(Pp(r) + P′p(r))/2 (10)

ROT ) Nrot (11)
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action energy, meaning the energy required to transfer a
molecule from a continuum dielectric (vacuum) to another
(water).

Due to the very different sizes of the protein and its ligands,
the contribution of the protein-ligand complexes (∆Greac(P-L)

0 )
and of the free protein (∆Greac(P)

0 ) could be omitted from the
calculation without affecting the reliability of the results.64

Thus, this component corresponds here to the free energy of
peptide desolvation (-∆Greac(L)

0 ).
Caculation of the Different Energy Scores. After trans-

forming the energy-minimized time-averaged conformation of
each complex in the SYBYL (TRIPOS Assoc. Inc.) mol2 format,
Fresno directly calculates the HB, LIPO, ROT, and BP scores
for the corresponding ligand.

Calculation of Desolvation Energies. Desolvation ener-
gies of all ligands were computed using the DelPhi pro-
gram.65,66 Peptides were first extracted from the refined MHC-
peptide final structure and centered in three-dimensional
boxes of resolution 2.0, 1.20, and 1.10 grid points Å-1,
respectively. For each calculation, 90% of the box was filled
with the corresponding molecule. Atomic radii and charges
were taken from the AMBER 5.0 parameter set.55 Inner and
outer dielectrics were assigned values of 2.0 and 1.0 (vacuum)
or 80 (water environment). An ionic strength of 0.145 M and
a ion exclusion radius (Stern layer) of 2.0 Å were used
according to previously reported solvent calculations.66 A probe
radius of 1.8 Å was utilized for computing the surface at which
the electrostatic potential was extrapolated.

Statistical Analyses. For each MHC-peptide complex, all
contributions to the binding free energies (HB, LIPO, ROT,
BP, and DESOLV) scores were imported into a SYBYL
spreadsheet with the first column figuring the experimental
binding free energy used as the dependent column of a PLS
analysis.67 Regression coefficients were derived for each col-
umn and optimized for each training set. Leave-one-out cross-
validation led to q2 (cross-validated correlation) coefficient and
spress (standard error of prediction) as indicators of the predic-
tivity of the training model

where ypred is a predicted value, yobs is the experimental value,
ymean is the best estimate of the mean of all values that might
be predicted

where N is the number of objects and k the number of
variables.
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