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The design of biologically active compounds from ligand-free protein structures using a structure-based
approach is still a major challenge. In this paper, we present a fast knowledge-based approach (HS-Pharm)
that allows the prioritization of cavity atoms that should be targeted for ligand binding, by training machine
learning algorithms with atom-based fingerprints of known ligand-binding pockets. The knowledge of hot
spots for ligand binding is here used for focusing structure-based pharmacophore models. Three targets of
pharmacological interest (neuraminidase, �2 adrenergic receptor, and cyclooxygenase-2) were used to test
the evaluated methodology, and the derived structure-based pharmacophores were used in retrospective
virtual screening studies. The current study shows that structure-based pharmacophore screening is a powerful
technique for the fast identification of potential hits in a chemical library, and that it is a valid alternative
to virtual screening by molecular docking.

INTRODUCTION

Structure-based virtual screening of compound libraries
is now widely used to prioritize hits for a given protein target
of known three-dimensional (3-D) structure. The method of
choice in these cases consists of docking numerous com-
pounds in the receptor binding site and scoring the corre-
sponding poses with energy-based scoring functions.1 Several
docking algorithms and scoring functions are available,2 but
the main limitation of this approach resides in the fact that
their use is highly target-dependent.3,4 Even if some general
rules have been reported,4 it is still very difficult to know in
advance which combination of docking program and scoring
function will give optimal results for a particular target, and
as such, it is normal practice to try in consensus a few
docking/scoring combinations to identify the most suitable
in each case.5,6

The use of structure-based pharmacophore models7–11 for
virtual screening is a potential alternative to docking since
pharmacophore parametrization is not target-dependent, it
may be fuzzy enough to accommodate target flexibility, and
it is computationally not expensive. A pharmacophore is the
3-D arrangement of features that are necessary for the binding
of small molecules to a macromolecular receptor. In most
common applications, pharmacophores are identified from
a set of ligands of known activity but unknown receptor
structure.12 Knowledge of the corresponding receptor struc-
ture may be incorporated while editing the pharmacophore
by generating exclusion spheres mapping protein atoms or,
even better, by prioritizing molecular interaction features13

from protein structures. The major difficulty of the latter
approach is the identification of the hot spots for binding,
that is, those residues that can form strong interactions with
a small-molecular-weight compound. If one or more X-ray
structures of protein-ligand complexes are available, then
interacting residues can be easily identified, and the corre-
sponding receptor-based pharmacophore models are easier
to generate.9,10

In many cases, however, especially for the ever-increasing
number of proteins solved by structural genomics consortia,14

only the X-ray structure of the apoprotein is available with
no knowledge of the binding mode of putative ligands. One
must then only rely on target information to set up reliable
pharmacophores. The structure-based pharmacophore (SBP)
method15 implemented in Discovery Studio16 is a possible
approach to this problem. SBP converts LUDI13 interaction
maps within the protein binding site into Catalyst16 phar-
macophoric features: H-bond acceptor, H-bond donor, and
hydrophobe. The main limitation of the SBP flowchart is
that interaction maps generally consist of hundreds of
Catalyst features, which means thousands of possible phar-
macophoric hypotheses, and this makes the pharmacophore-
based screening of a compound library computationally
expensive. In a slightly different approach still conceptually
close to SBP, Schüller et al. recently proposed converting
the LUDI interaction maps into a virtual ligand described
as an alignment-free descriptor vector.17 In both approaches,
the a priori knowledge of the most reliable anchoring binding
site residues would limit the number of possible pharma-
cophoric descriptors and considerably speed up the screening
process. Targeting the most favored hydrophobic and H-
bonding residues of a binding site has been reported in two
separate approaches,18,19 which however still remain incom-
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plete with respect to full pharmacophore definition. Grid20

and SuperStar21 can be used to identify hot spots by
predicting the most favorable positions of atomic probes
within the active site. Whereas Grid uses a force field to
derive those positions, SuperStar relies on a knowledge-based
approach from experimentally determined nonbonded inter-
actions in small molecules’ crystal structures.22 Coupling
Grid interaction maps to receptor-based pharmacophore
generation was reported several years ago8 and later refined
using an automated protocol.23 Grid interaction maps have
also been applied as a preliminary filter to docking,24 to
detect protein-protein interaction areas,25 and recently to
merge chemical and biological spaces in the FLAP algo-
rithm.11 Nonetheless, converting interaction maps into phar-
macophore queries is still cumbersome and usually requires
a significant level of manual intervention, notably the choice
of an acceptable energy threshold to derive interaction field
minima.

As a conclusion to existing state-of-the art methods, there
is still a need for a fast and automated computational
approach able to directly convert 3-D atomic structures of
protein binding sites into simple and workable pharmacoph-
oric queries. The current study aims at filling this gap by
applying machine learning algorithms26 to identify hot spots
for ligand binding in protein binding sites. A 3-D database
of protein-ligand structures was first set up and converted
into ligand-annotated cavity fingerprints to train several
machine learning algorithms to discriminate ligand-interact-
ing from noninteracting protein atoms. A model built using
a combination of random forest decision trees was identified
as the best to predict interacting atoms in protein binding
sites. This model was subsequently used to predict interacting
atoms from the known X-ray structure of three proteins of
pharmacological interest: neuraminidase, �2 adrenergic
receptor, and cyclooxygenase-2. Predicted interacting atoms
were then utilized as seeds to generate structure-based
pharmacophore models, which were further queried to
discriminate true ligands from chemically similar decoys.
Our approach significantly simplifies pharmacophore genera-
tion by restricting the number of interesting anchoring protein
atoms and enables the systematic screening of all possible
four-feature pharmacophore models to identify potential
ligands.

METHODS

Setting up a Data Set of Interacting and Noninteract-
ing PDB Cavity Atoms. The data set used in this study was
selected from the third release (2006) of the sc-PDB,27 which
is a collection of druggable ligand-binding sites extracted
from the Protein Data Bank.28 Out of the 4468 sc-PDB
entries, several filters were applied to simplify the data set
by removing protein-ligand duplicates (at the level of
SMILES string for the ligand and E.C. annotation for the
protein) and any entry containing cofactors, heme groups,
and nonstandard amino acids. The final protein-ligand data
set was composed of 3500 entries. For each entry, the binding
site was defined from any amino acid for which one atom is
located within a 4.5-Å-radius sphere centered on all atoms
of the sc-PDB ligand.

The interaction fingerprint (IFP) program29 was used to
identify protein atoms that interact with the corresponding

ligand. IFPs are 1-D bit vector representations of the
protein-ligand interactions. Eight interaction types were
considered for each protein atom: hydrophobic, aromatic
(face-to-face), aromatic (edge-to-face), H-bond (protein donor
atom), H-bond (protein acceptor atom), ionic (positively
charged protein atom), ionic (negatively charged protein
atom), and metal complexation. The interactions were
identified on the basis of protein and ligand atom types,
distances, and angles between atoms. Details of the program
have been previously reported elsewhere.29 Each atom of
all 3500 ligand-binding sites was classified as interacting if
at least one of the eight bits in the IFP was switched on.
The data set contains a total of 623 759 atoms, of which
122 070 are found to be interacting with a ligand (IA) and
501 689 are found to be non interacting (NIA), with a ratio
NIA versus IA of 4.1:1.

Defining Atom-Based Cavity Fingerprints (CFP). Each
binding site of the data set was described by use of an atom-
based fingerprint which accounts for the properties of the
binding site atom ai, properties of the residue ri that the atom
ai belongs to, and properties of the environment ei of atom
ai. Three different fingerprints (CFP1, CFP2, and CFP3) were
used, which only differ in the way the residue and environ-
ment properties are encoded. Pharmacophoric property
assignment (hydrophobe, aromatic, H-bond donor, H-bond
acceptor, positive charge, negative charge, and metal) was
done on-the-fly using OpenEye’s OEChem 1.4.2 library.30

Atom Properties. The following pharmacophoric and
topological features are registered in a 10-bit vector to
describe each atom ai: hydrophobicity, aromaticity, H-bond
donor, H-bond acceptor, positive charge, negative charge,
location in the main chain, location in the side chain, and
accessibility. With the exception of accessibility, each
property is encoded in a binary way to account for the
presence (1) or absence (0) of the property itself. The atomic
accessibility is defined as follows:

accessibility) MS

4πr2
× 100 (1)

where MS is the molecular surface calculated with the MS
Connolly program31 using a probe of radius of 1.4 Å, and r
is the van der Waals radius of the atom under consideration
(default MS values).

Three intervals were selected to encode the accessibility
in two bits, on the basis of the computed difference in
accessibility between interacting and noninteracting atoms
from sc-PDB ligand-binding sites (Supporting Information):
01, accessibility e 5%; 11, 5% < accessibility e 30%; 10,
accessibility > 30%.

Residue Properties. This block depends on the cavity
fingerprint definition (CFP1, CFP2, or CFP3).

CFP1 is a nine-bit binary fingerprint accounting for eight
physicochemical properties: hydrophobicity, aromaticity,
H-bond donor, H-bond acceptor, positive charge, negative
charge, metal, and size. The size of a residue is defined
according to the number of heavy atoms, and it is encoded
in two bits: 10, small (between zero and three heavy atoms);
11, medium (between four and six heavy atoms); 01, large
(between 7 and 10 heavy atoms).
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CFP2 is an integer fingerprint featuring the number of
occurrences of each above-described property in the residue
of interest. The size of the residue is encoded in two bits as
for CFP1.

CFP3 is a binary fingerprint of 21 bits, where 20 bits
account for each of the 20 natural amino acids and one
additional bit accounts for metals (Ca, Co, Mg, Mn, and Zn).

EnVironment Properties. The environment of an atom ai

in the binding pocket is defined by any amino acid for which
one atom is located within a 4.5-Å-radius sphere centered
on the atom of interest and whose side chain is pointing
toward the atom itself. The side chain of a neighboring
residue is considered to be pointing toward the atom of
interest if the angle formed by the atom, the CR of the
neighboring residue, and the geometric center of the neigh-
boring residue is below 90°. The same encoding as previously
reported for the “residue property” block is then collectively
applied to all residues selected to contribute to the
environment.

The sc-PDB protein cavities are then described by 26
attributes for CFP1 and CFP2 fingerprints and 52 attributes
for the CFP3 fingerprint (see exhaustive definition in the
Supporting Information).

Classification Models. The data set on which various
machine learning algorithms were evaluated consists of 623 759
atoms characterized by an identifier, the corresponding cavity
fingerprint (CFP1, CFP2, or CFP3), and a final bit encoding
its interacting (IA) or noninteracting (NIA) character. Decision
trees and naive Bayesian inference were investigated for the
classification of interacting and noninteracting atoms in protein
binding sites. Decision trees were generated using the Java
machine learning workbench WEKA v.3.5.5,26 while Pipeline
Pilot v.6.132 was used for naive Bayesian classification. Decision
trees work from the top down, selecting at each stage an attribute
that best separates the classes. In the current study, the J48
algorithm, which is a Java implementation of Quinlan’s C4.5
algorithm,33 and the random forest approach34 were used. The
main feature of the J48 algorithm is the postpruning of leaves
that do not greatly contribute to the predictive accuracy of the
tree. It is widely recognized that predictive abilities of trees can
be improved by training each tree on a different subset of data,
using techniques such as bagging or boosting.26 For this reason,
the AdaBoostM1 algorithm35 implemented in WEKA was used
in conjunction with J48 trees. This algorithm generates boot-
strapped samples with replacement from the original data set;
at each stage, the accuracy of a tree is used to bias the selection
of entries for the next sample, so that poorly predicted entries
have a higher probability of being selected, and the next tree
can focus on these more difficult cases. Also in random forest,
trees are built using samples with replacement from the original
data set, and in addition, only a subset of the attributes is used
to build each tree. Unlike J48, no pruning is performed in
random forest.

A naive Bayesian classifier is based on Bayes’ theorem,
which relates the conditional and marginal probabilities of
two events, A and B, as follows:

P(A|B)) P(B|A)P(A)
P(B)

(2)

where P(A|B) is the conditional probability of A given B,
P(B|A) is the conditional probability of B given A, P(A) is

the prior probability of A, and P(B) is the prior probability
of B.

For each object that has to be classified, a naive Bayesian
model returns the probability of the object to belong to one
class. This classifier assumes events to be equally important
and independent. In Pipeline Pilot,32 a Laplacian correction36

is used to ensure that attributes that never occur receive a
probability value.

Classification models were built using a randomly selected
training set corresponding to 25% of the full data set and a
test set consisting of the remaining 75% of the data. The
criteria used for the evaluation of the performance of each
model and for a comparison of different models are sensitiv-
ity, specificity, precision(IA) and precision(NIA), which are
defined as follows:

Sensitivity) TP
TP+ FN

(3)

Specificity) TN
TN+ FP

(4)

Precision(IA)) TP
TP+ FP

(5)

Precision(NIA)) TN
TN+ FN

(6)

where TP are true positives, TN true negatives, FP false
positives, FN false negatives, IA interacting atoms, and NIA
noninteracting atoms.

The receiver operating curve (ROC) score37 was also used
for assessing and comparing the performance of the different
methods. The ROC score is the area under the ROC curve,
which represents the correlation between the false positive
rate, defined as 1-specificity, and the sensitivity. The ROC
score can vary between 0 and 1, where 1 represents the ideal
situation of perfect prediction.

Converting Predicted-Interacting Atoms into Pharma-
cophore Queries. DiscoveryStudio2.016 was utilized as a
platform to generate pharmacophore queries from ligand-
free protein structures as follows. The “Interaction Genera-
tion” protocol was first used to read the input protein PDB
file with hydrogen atoms and to output a LUDI interaction
map for three features (H-bond donor, H-bond acceptor, and
hydrophobic). The latter were subsequently hierarchically
clustered according to their type and location, and only
cluster centers complementary to the set of previously
predicted interacting atoms were kept. The resulting phar-
macophores were finally supplemented with 2-Å-radius
exclusion spheres located at the CR atomic coordinates of
the user-defined binding site residues. In cases where these
exclusion spheres were imperfectly mimicking the protein
surface, additional spheres were added, notably for bulky
side chains (e.g., Arg and Trp) folding inward the binding
site center.

Compound Library Setup and Screening. For each of
the three investigated targets, a compound library was
customized to contain as many chemically diverse known
actives and decoys describing a similar chemical space. True
actives were retrieved from the literature (see the Supporting
Information). The structures of the targeted ligands in a 2-D
sd file were ionized at physiological pH with Filter v.2.0.138

and standardized with JChem v.3.2.3,39 and 3-D coordinates
were generated with Corina v.3.4.40
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3-D coordinates were saved either in sd file format for a
pharmacophore search or in mol2 file format for docking.
Decoys were taken from our in-house repository of com-
mercially available druggable ligands41 and selected to span
global property ranges (molecular weight, H-bond donor
count, H-bond acceptor count, logP, and negative and
positive charge counts) similar to those of the set of actives.
To reduce the risk that potentially active compounds might
be selected by chance, a maximal Tanimoto similarity
threshold of 0.3 computed from SciTegic ECFP4 circular
fingerprints32 was applied to remove decoys close to any of
the true actives.

A maximum of 250 conformers were generated in DS
Catalyst for each compound using the FAST parameter
settings with an upper energy threshold of 20 kcal mol-1.
The “Screen Library” protocol in DS was used to screen the
compound libraries against all possible combinations of
three-, four-, and five-feature pharmacophore models, using
a minimum interfeature distance of 0.5 Å and rigid fitting.
Complete screening timings ranged from 15 min to 3 h on
a 2.4 GHz PC running Windows XP with 1.25 GB of RAM.

Docking. Standard parameters of FlexX2.2,42 Sur-
flex2.11,43 and two times speed-up settings of Gold3.244 were
used to dock the above-described libraries. The binding site
was defined in FlexX (receptor description file), Surflex
(protomol file), and Gold (gold.conf file) from the 3-D
coordinates of binding cavities, as predicted by MOE Site
Finder.45 3-D coordinates of the targets (2qwf, 2rh1, and
5cox) were directly taken from the sc-PDB database46

without any further energy refinement. Whereas FlexX used
a PDB file format without explicit definition of hydrogen
atom positions, Surflex and Gold utilized a mol2 file format
with explicit hydrogen atoms. The top-ranked pose, according
to the native scoring function of each docking program
(FlexXscore, -log(Kd), Goldscore) was saved for further
postprocessing with in-house Perl and shell scripts to rank
compounds by decreasing docking scores.

RESULTS AND DISCUSSION

The basic idea behind the herein-proposed HS-Pharm
flowchart (Figure 1) is to use machine learning algorithms
to classify protein cavity atoms as noninteracting or interact-
ing and exclusively focus the receptor-based pharmacophore
definition on the latter atoms. To achieve this goal, the first
step is to develop a database of atoms lining ligand-binding
sites, annotate them according to their anchoring potential
(interacting, noninteracting), and describe them by a finger-
print with some physiochemical relevance.

The Data Set. As a source of ligand-binding sites, we
chose the sc-PDB data set,27 which presents several advan-
tages: (1) the corresponding ligand is characterized from a
pharmacological and not a structural point of view, (2)
ligand-binding sites are filtered by ligand-based and structure-
based topological filters to retain druggable cavities only,
(3) all binding sites are carefully annotated at the biochemical
level. Starting from 4468 sc-PDB entries, 3500 binding
cavities were finally selected and randomly separated into a
training set (25% of entries) and a test set (75% of entries).
Analysis of the biochemical annotation (at the E.C. annota-
tion level) of all entries in both sets suggests that there is no
major bias in the splitting procedure (Figure 2A) and that

the E.C. annotation of enzymes in both sets mirrors that of
the Protein Data Bank28 for enzymes. As already noticed
for the full sc-PDB,27 the data set is enriched in enzymes
(ca. 70% of entries) with respect to the PDB, which simply
corresponds to the higher propensity of enzymes to be
cocrystallized with a druglike ligand.

For each complex of the data set, the corresponding
protein-ligand molecular interactions for each cavity atom
were computed with the IFP program.29 Out of the 623 759
protein cavity atoms stored in our data set, about one-fourth
(122 070) were found to be interacting with a ligand. The
distribution of molecular interaction types is again very
similar in both the test set and the training set (Figure 2B).
The prevalence of hydrophobic contacts among registered
interactions in IFP bit strings (ca. 70%) reflects the abundance
of carbon atoms in PDB complexes and shape recognition
between a protein cavity and its cognate ligand. Whereas
aromatic contacts are equally distributed among edge-to-face
and face-to-face interactions (3% for each), H bonds are
significantly more frequent from protein donor atoms (13%)
than from protein acceptor atoms (7%). The same discrep-
ancy is observed by comparing the occurrence of salt bridges
with protein cationic atoms (2% of all interactions) and
anionic atoms (1%). These discrepancies only reflect a bias
in the chemical space described by PDB ligands. Hence,
among the 5525 currently registered sc-PDB ligands, there
are nearly twice more anionic ligands (e.g., nucleotide
analogues) than cationic compounds.

Assessment of Classification Models. After tagging
protein cavity atoms as ligand-interacting and noninteracting,
we next need to encode topological and physicochemical
properties of protein cavity atoms into a simple fingerprint
from which machine learning algorithms may learn to
distinguish interacting from noninteracting atoms. Three
slightly different CFPs and classification algorithms (naive
Bayes, decision trees, and random forest) were compared
for this purpose. A total of 25% of the data set was used for
learning, and the remaining 75% was utilized for testing.
Default values in WEKA were used in building the decision
trees; for random forest, the increase in the number of trees
(default is 10) was investigated, but no improvement in
predictions was observed. For each CFP, random forest and
boosting combined with the J48 algorithm yield similar
predictions (Table 1). All CFPs are relatively similar in
specificity, precision, and ROC score, but the sensitivity is
lower for CFP1 compared to those for CFP2 and CFP3. This
is likely to be due to the nature of the fingerprints, since
CFP1 collectively describes residues and the environment
by property type, whereas CFP2 and CFP3 allow a better
description of individual cavity residues and thus of corre-
sponding individual atoms. Mixing integers with bits in the
fingerprint (CFP2) does not affect the accuracy of the
corresponding models with respect to a full bit string
definition (CFP1 and CFP3). If we now compare the
classification performance of the naive Bayesian classifier
to the decision trees, it can be noticed that a higher sensitivity
is achieved by all CFPs, but at the cost of a significant
decrease in precision(IA) and in specificity, which means that,
while more interacting atoms are correctly classified as
interacting, more noninteracting atoms are misclassified as
interacting. CFP3 achieved the highest sensitivity and lowest
specificity, while CFP2 has the lowest sensitivity and highest
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Figure 1. HS-Pharm flowchart. Starting from a 3-D structure of a target, the most relevant binding site is selected manually or automatically
(step 1), and it is used to prioritize the most interesting interacting atoms (step 2a) and to generate an interaction map with few probe atoms
(step 2b). The interaction map is converted into Catalyst pharmacophoric features (step 3) and further simplified by focusing on cavity
atoms predicted to be interacting with a putative ligand (step 4). The simplified features are transformed into all possible three-feature,
four-feature, and five-feature pharmacophores, which are sequentially screened (Step 5) to find putative hits.
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specificity. This is most likely due to the fact that, while
CFP1 and CFP3 are binary fingerprints, CFP2 is a mixed
fingerprint, which combines a binary part to an integer part;
this probably affects the naive Bayesian Pipeline Pilot
classification.

We thought that specificity was an important descriptor
of the model since we wished to define a limited set of
potentially interacting atoms to simplify the corresponding
pharmacophores. We therefore prioritized random forest and
decision trees to further improve the limited sensitivity while
keeping the specificity of our preliminary models. As
previously reported, interacting atoms are less abundant in
the data set than noninteracting atoms. Several methodologies
can be used to improve predictions on the least represented
class in an unbalanced data set. One such methodology
implemented in WEKA is the meta learner algorithm
ThresholdSelector,26 which selects a probability threshold
on the classifier’s output in order to optimize the F measure
on the least represented class. The F measure is defined as
follows:

F) 2TP
2TP+ FP+ FN

(7)

where TP are true positives, FP are false positives, and FN
are false negatives.

When compared to a simple random forest, the use of this
meta learner increases the sensitivity, as expected, but
decreases the specificity and the precision (IA) for all three
fingerprint types (Table 2). We thus tried a voting algorithm
combining random forest alone and random forest with
threshold selection to average probability estimates for
interacting and noninteracting atoms. The voting algorithm
could not be used in combination with the CFP3 fingerprint
due to memory limitations in WEKA. However, for the other
two cavity fingerprints, the combined model provides a good
compromise between the two separate initial classifications.
CFP2 descriptors lead to a slightly higher ROC score and
sensitivity than CFP1. In addition, the corresponding model
reaches a better balance between sensitivity and precision.
The specificity is still good enough to limit the number of
predicted interacting atoms. For this reason, the CFP2 cavity
fingerprint was further selected for retrospective pharma-
cophore elucidation for three targets (see below).

Evaluation on an External Validation Set. To further
probe the predictive ability of the above classification model,
an additional external validation set was created from entries
recently added to the fourth release of the sc-PDB database.
Of the 2057 new entries found, only those whose E.C.
number was absent in the original data set of 3500 entries
were selected. The external validation set was composed of
114 new entries, on which none of the previous classifiers
had been trained. In addition to the previous definition of
binding sites used in the original data set (see Methods),
larger cavities were created by selecting residues within 6.5
Å of the ligand. Last, for 10 randomly selected entries in
the external validation set, the binding site was detected on-
the-fly using the MOE cavity detection algorithm.45 The Site
Finder module in MOE identifies all pockets in a given
protein apo structure and ranks them as possible binding sites.
For each entry, the cavity identified by MOE which was
closest to the true binding site (according to the ligand-based
definition) was extracted and used for predictions. This cavity
definition truly reproduces the situation in which the
methodology described here would be used to prioritize hot
spots from apoprotein structures.

As can be seen from Table 3, predictions obtained using
the previously described voting approach are still in good
agreement with previous predictions on the test set, whatever

Figure 2. Properties of the test set and training set (sc-PDB
protein-ligand complexes) used for classifying protein atoms. (A)
Distribution of sc-PDB entries according to the E.C. classification
(1, oxidoreductases; 2, transferases; 3, hydrolases; 4, lyases; 5,
isomerases; 6, ligases; No EC, no E.C. number attributed). (B)
Molecular interactions encoded in all atom-based molecular interac-
tion fingerprints (1, hydrophobic; 2, edge-to-face aromatic; 3, face-
to-face aromatic; 4, H-bond (protein is donor); 5, H-bond (protein
is acceptor); 6, ionic interaction (protein is positively charged); 7,
ionic interaction(protein isnegativelycharged);8,metalcomplexation.

Table 1. Evaluation of Classification Models on the Test Set

model CFP Sea Spb Pr (IA)c Pr (NIA)d ROCe

random forest CFP1 0.27 0.96 0.60 0.84 0.82
CFP2 0.37 0.94 0.61 0.86 0.81
CFP3 0.37 0.94 0.61 0.85 0.82

AdaBoostM1(J48) CFP1 0.27 0.96 0.60 0.84 0.82
CFP2 0.36 0.94 0.62 0.86 0.82
CFP3 0.37 0.94 0.61 0.85 0.82

naive Bayes CFP1 0.76 0.59 0.31 0.91 0.74
CFP2 0.72 0.64 0.33 0.90 0.73
CFP3 0.80 0.56 0.30 0.92 0.75

a Sensitivity. b Specificity. c Precision (interacting atoms).
d Precision (noninteracting atoms). e Area under the ROC curve.

Table 2. Evaluation of Additional Classification Models on the
Test Set

model CFP Sea Spb Pr (IA)c Pr (NIA)d ROCe

RF/ThresholdSelectorf CFP1 0.68 0.79 0.44 0.91 0.82
CFP2 0.66 0.81 0.46 0.91 0.81
CFP3 0.66 0.81 0.46 0.91 0.81

Voteg CFP1 0.41 0.91 0.53 0.86 0.78
CFP2 0.48 0.90 0.48 0.90 0.81
CFP3 n.a.h n.a. n.a. n.a. n.a.

a Sensitivity. b Specificity. c Precision (interacting atoms).
d Precision (noninteracting atoms). e Area under the ROC curve.
f Random forest with threshold selection (see text). g Voting
algorithm combining random forest alone and random forest with
threshold selection. h Not available.
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the binding site definition. We can thus assume that this
classification model has been trained on a training set which
sufficiently samples known cavity atoms in order to derive
relevant predictions. In addition, the use of an automated
procedure to detect the ligand-binding cavity does not alter
the accuracy of the derived model either. We can thus
conclude that the voting model is robust enough to be
efficiently used for predicting ligand-anchoring atoms in
protein binding sites.

Defining and Querying Structure-Based Pharmacoph-
ore Models. As discussed in the introduction, the knowledge
of hot spots in protein cavities can be applied to the
generation of structure-based pharmacophore models, which
can be further queried to discover appropriate ligands by
virtual screening. Three proteins, which were not present in
the training set used to train the classification models, were
selected to test the methodology. The Site Finder module in
MOE was used to extract the binding sites from the proteins,
as described above, and CFP2 cavity descriptors were
calculated for each atom of the corresponding pockets. The
combined model (random forest and random forest with
ThresholdSelector) was used for predicting interacting atoms
in the binding sites.

Neuraminidase (NA). The influenza virus neuraminidase
is a tetrameric glycoprotein target for anti-infuenza drugs.47

This target was chosen for the highly polar nature of its sialic
acid binding site, which is formed of 28 residues with a high
abundance of charged amino acids. Our classification model
applied to the ligand-depleted 2qwf PDB entry48 predicts
32 atoms to be of interest for interacting with a potential
NA inhibitor (Figure 3A). Out of these 32 atoms, 14 are
less than 4.5 Å away from the 2qwf ligand, whose coordi-
nates were not taken into account in the classification. A
pharmacophore was derived from the LUDI interaction map,
and only those features close to any of the 32 atoms of
interest were selected, thus limiting the number of pharma-
cophoric features to seven: one H-bond acceptor toward
Lys292 (Acceptor1); one H-bond acceptor toward Arg118
and Arg371 (Acceptor 2); three H-bond donors toward
Glu277 (Donor 1), Glu119 (Donor2), and Glu276 (Donor3);
one hydrophobic feature close to Ile222 and Arg224 side
chains (Hydrophobe1); and one hydrophobic feature close
to Arg152, Trp178, and Ser179 side chains (Hydrophobe2).
A total of 37 exclusion spheres were added to the pharma-
cophore model, which is shown in Figure 3B.

A compound library was set up from eight known NA
inhibitors (see the Supporting Information) and 792 decoys
randomly selected from an in-house database of com-
mercially available druglike compounds (Bioinfo database).41

In order to avoid biasing in silico screening results, decoys
were carefully selected to span the same chemical space as
true NA inhibitors. All possible three-feature, four-feature,
and five-feature pharmacophores were serially screened with

DS Catalyst for their propensity to retrieve true NA inhibi-
tors. Using three-feature pharmacophores (P3 model, Figure
4D), all eight active compounds were retrieved, but the
majority of the decoys also passed the pharmacophores
(sensitivity ) 1.0; specificity ) 0.1). With the four-feature
pharmacophores (P4 model), six out of eight actives were
retrieved, and the number of false positives considerably
decreased (sensitivity ) 0.75; specificity ) 0.68). Finally,
using five-feature pharmacophores (P5 model), only one
active was retrieved, and the number of decoys retrieved
decreased even more (sensitivity ) 0.25; specificity ) 0.98).
Screening with four-feature pharmacophores thus represents
the best compromise, as screening with three-feature phar-
macophores is too permissive, while screening with five-
feature pharmacophores is too restrictive. We then analyzed
the results of this in silico screening to check whether some
features are prevalently matched by true positives. Heat maps,
which highlight the matched and unmatched pharmacophoric
features, were generated for all positives, which means any
conformer passing any of the four-feature pharmacophores.
It can be noticed that the majority of true positives (conform-
ers of true ligands) match Donor1 and Donor2, which is not
the case for positives (Figure 4A,B). To automatically select
those features that are preferentially matched by true posi-
tives, we computed the matching frequency of each feature
for all conformers passing the pharmacophores and compared
the corresponding frequencies for true positives and positives
(Figure 4C). The differential frequency (DF) in matching
frequency F for a particular feature f between true positives
(TP) and positives (P) was computed as

DF)Ff(TP)-Ff(P) (8)

where Ff ) n/N, n being the number of matches and N the
number of conformers fulfilling the pharmacophore query.

As previously noticed from the heat maps, two features
(Donor1 and Donor2) are more frequently matched by true
positives than by positives (DF > 0.15). We thus studied
the influence of constraining these features in postprocessing
the hit list. It is important to recall at this point that only
information about true inhibitors (as it is commonplace for
pharmacophore elucidation) and not their binding mode is
used to postprocess screening results. When entries that did
not match Donor1 were discarded, the same sensitivity was
maintained (0.75), but the specificity considerably increased
to 0.89 (P41 model, Figure 4D). When entries that did not
match Donor2 were discarded (P42 model, Figure 4D), the
sensitivity decreased to 0.50 and the specificity increased to
0.90. If entries that did not match both donors were discarded
(P43 model, Figure 4D), the sensitivity decreased to 0.37,
while the specificity increased to 0.95. We can then conclude
that the proposed receptor-based pharmacophore, with two
H-bond acceptors, three H-bond donors, and two hydropho-
bic groups can be used in library screening to find new
potential NA inhibitors using all possible combinations of
four features, while constraining the Donor1 feature to be
necessarily fulfilled.

�2 Adrenergic Receptor (ADRB2). The �2 adrenergic
receptor is a G-protein coupled receptor (GPCR) that binds
adrenaline and noradrenaline to regulate cardiovascular and
pulmonary functions.49 Its binding site can be considered a
prototypical druggable binding site with a good balance of
polar and hydrophobic residues. The crystal structure of

Table 3. Atom-Based Predictions on the Validation Set

binding site definition Sea Spb Pr (IA)c Pr (NIA)d ROCe

4.5-Å-radius sphere 0.42 0.90 0.48 0.87 0.77
6.5-Å-radius sphere 0.46 0.87 0.30 0.93 0.76
MOE SiteFinder 0.47 0.89 0.44 0.91 0.76

a Sensitivity. b Specificity. c Precision (interacting atoms).
d Precision (noninteracting atoms). e Area under the ROC curve.
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ADRB2 in complex with the inverse agonist carazolol was
recently published.50 The ligand-binding site of this receptor
(2rh1 entry), is formed by 44 residues (Figure 5A). From
the 67 atoms which were predicted to be interacting with a
putative ligand, a pharmacophore model with two H-bond
acceptor features, three H-bond donor features, and five
hydrophobic features was identified (Figure 5B): one H-bond

acceptor toward Asn293 (Acceptor1); one H-bond acceptor
toward Asn312 (Acceptor2); two H-bond donors toward the
carboxylic acid moiety of Asp113 (Donor1 and Donor2);
one H-bond donor toward Ser203 (Donor3); one hydrophobic
feature close to Val114 and Phe290 side chains (Hydro-
phobe1); one hydrophobic feature close to three aromatic
side chains (Phe193, Phe289, and Tyr308; Hydrophobe2);

Figure 3. Neuraminidase structure-based pharmacophore. (A) Predicted interacting atoms (spheres) in the 2qwf ligand binding site. (B)
Pharmacophoric features: H-bond acceptor features are colored in green; H-bond donor features are colored in magenta; hydrophobic
features are colored in blue. Exclusion spheres are not displayed for sake of clarity.

Figure 4. Heat plots for neuraminidase inhibitor screening with 4-feature pharmacophore models. Matched features are colored in red;
unmatched features are colored in blue. (A) Actives retrieved in the hit list. (B) Full hit list. (C) Differential occurrence in matching
frequency between true positives and positives. (D) Sensitivity vs specificity of various pharmacophore searches: P3, three-feature
pharmacophores; P4, four-feature pharmacophores; P41, four-feature pharmacophores with donor 1 fixed; P42, four-feature pharmacophores
with donor 2 fixed; P43, four-feature pharmacophores with donors 1 and 2 fixed; P5, five-feature pharmacophores.
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one hydrophobic feature close to Thr110 and Phe193 side
chains (Hydrophobe3); one hydrophobic feature close to
Val117, Trp286, and Phe290 side chains (Hydrophobe4); and
one hydrophobic feature close to Gly90, Ile94, Trp109,
Ile309, Trp313, and Tyr316 (Hydrophobe5). A total of 77
exclusion spheres were added to the final pharmacophoric
model, which is shown in Figure 5B.

A �2 receptor-targeted compound library was set up from
20 known active compounds (see the Supporting Informa-
tion) and 980 chemically similar decoys. To check whether
the cavity-based pharmacophore may be fuzzy enough to
accommodate ligands with different functional effects, we

explicitly selected as true actives six inverse agonists, five
partial agonists, four antagonists, and five full agonists of
the �2 receptor. Again, all possible combinations of three-
feature, four-feature, and five-feature pharmacophores were
evaluated for their ability to selectively retrieve known
actives. Screening with three-feature pharmacophores (P3
model, Figure 6D) was far too permissive since it returned
898 hits, among which were all 20 active compounds
(sensitivity ) 1.0; specificity ) 0.10). Screening with four-
feature pharmacophores (P4 model) returned fewer com-
pounds (616 hits), among which were 19 active compounds
(sensitivity ) 0.95; specificity ) 0.39). However, its

Figure 5. �2 adrenergic receptor structure-based pharmacophore. (A) Predicted interacting atoms (spheres) in the 2rh1 ligand binding site.
(B) Pharmacophoric features: H-bond acceptor features are colored in green; H-bond donor features are colored in magenta; hydrophobic
features are colored in blue. Exclusion spheres are not displayed for sake of clarity.

Figure 6. Heat plots for �2 adrenergic receptor ligand screening with four-feature pharmacophore models. Matched features are colored in
red; unmatched features are colored in blue. (A) True positives. (B) Positives. (C) Differential feature matching frequencies between true
positives and positives. (D) Sensitivity vs specificity of various pharmacophore searches: P3, three-feature pharmacophores; P4, four-
feature pharmacophores; P41, four-feature pharmacophores with donor 1 fixed; P42, four-feature pharmacophores with donor 2 fixed; P43,
four-feature pharmacophores with donor 3 fixed; P44, four-feature pharmacophores with donors 1 and 3 fixed; P5, five-feature pharmacophores.
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specificity is still too low to be of real use in prioritizing
hits. Finally, screening with five-feature pharmacophores (P5
model) returned 200 hits, seven of which were active
compounds (sensitivity ) 0.35; specificity ) 0.80). Again,
the four-feature pharmacophores achieve the better balance
between specificity and sensitivity. Looking at the difference
in feature-matching frequencies between true positives and
positives (Figure 6C), the three H-bond donor features appear
to be extremely important for true active identification and
were thus iteratively fixed in postprocessing the hit list. The
best results are obtained by screening with four-feature
pharmacophores with either Donor1 (P41 model) or Donor3
(P43 model) fixed. If both donors are kept fixed (P44 model),
there is a loss in sensitivity (0.55), but the specificity is highly
increased (0.99). Depending on the basic aim of the virtual
screening, two different queries might be set up. In order to
retrieve chemically diverse actives, a single constraint on
either Donor1 or Donor 3 will achieve the best possible
sensitivity but at the cost of a bigger hit list. Alternatively,
optimizing the hit rate within the shortest possible hit list
will be obtained by constraining both Donors 1 and 3 in a
four-feature pharmacophore query.

Interestingly, none of these pharmacophore models were
able to distinguish between agonists, antagonists, partial
agonists, and inverse agonists. Although binding of either
full agonists or partial agonists is known to be accompanied
by conformational changes at the transmembrane binding
cavity of the �2 receptor,51 high-resolution X-ray structures
of inactivated and photoactivated meta-II states of bovine
rhodopsin are surprisingly similar when looking at the
transmembrane helical bundle.52 Moreover, we recently
identified full agonists of the CCR5 chemokine receptor using
a structure-based approach applied to the presumed inactive
state model of the latter receptor,41 thus illustrating the subtle
differences occurring at the level of GPCR-ligand interac-
tions when comparing ligands with different functional
outcomes. Interestingly, the receptor-based model (either P41
or P43 model) was suitable in discarding ligands binding to
other adrenergic receptor subtypes (�3 and R1a subtypes)
with, as expected, a specificity closely related to the distance

between the target and the reference binding sites.53 For
highly related binding cavities (e.g., �2 and �3 ligand-binding
sites: 23/30 conserved residues), the ligands are too similar,
and the reference structure-based pharmacophore hardly
discriminates �2 from �3 ligands (three out of five selective
�3 receptor ligands were still selected by the �2-based
pharmacophore, data not shown). For a more divergent cavity
(e.g., the adrenergic R1a cavity: 17/30 conserved residues
with the �2 binding site), the corresponding ligands are
sufficiently different to be discarded by a structure-based
pharmacophore (only five out of 50 chemically diverse R1a
ligands selected, data not shown).

Cyclooxygenase-2 (COX2). Cyclooxygenase-2 is an en-
zyme biosynthesized during the inflammation process which
catalyzes the conversion of arachidonic acid into prostag-
landin H,54 and it is a major target for nonsteroidal anti-
infammatory drugs.55 The COX2 target is interesting since
its ligand-binding site exhibits ligand-induced rearrangements
of some key residues (Arg 120, Tyr355, and Val523), which
prevent the cross-docking of COX2 inhibitors.56 The ligand-
binding site, as identified with MOE from the apoprotein
structure (5cox PDB entry), is formed by 19 residues and
presents a strong hydrophobic nature (Figure 7A). From the
45 atoms which were predicted to be interacting, a pharma-
cophore model with one H-bond acceptor, one H-bond donor,
and four hydrophobic features was generated (Figure 7B):
one H-bond acceptor toward Arg120 (Acceptor1); one
H-bond donor toward the hydroxyl group of Tyr385 (Do-
nor1); one hydrophobic feature close to Val349, Ala527, and
Leu531 side chains (Hydrophobe1); one hydrophobic feature
close to Leu352, Val523, and Ala527 side chains (Hydro-
phobe2); one hydrophobic feature close to Val116, Val349,
Tyr355, Leu359, and Leu531 side chains (Hydrophobe3);
and one hydrophobic feature close to Phe381, Tyr385,
Trp387, and Phe518 (Hydrophobe4). A total of 39 exclusion
spheres were added to the final pharmacophore model (Figure
7B).

A COX-2 targeted molecular database was created from
10 known inhibitors (see the Supporting Information) and
990 chemically similar decoys selected from the Bioinfo

Figure 7. Cyclooxygenase-2 structure-based pharmacophore. (A) Predicted interacting atoms (spheres) in the 5cox ligand binding site. (B)
Pharmacophoric features: H-bond acceptor features are colored in green; H-bond donor features are colored in magenta; hydrophobic
features are colored in blue. Exclusion spheres are not displayed for sake of clarity.
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database. On one hand, screening the compound library
against all combinations of three-feature and four-feature
pharmacophores (P3 and P4 models, Figure 8D) was too
permissive and returned 868 and 590 hits, respectively, with
a very modest sensitivity for the four-feature pharmacophore
combinations (Figure 8). On the other hand, screening with
five-feature pharmacophores (P5 model) was more specific
and returned 164 hits, among which were three actives
(sensitivity ) 0.3; specificity ) 0.83). A single difference
in the frequency of matched features between true positives
and positives can be observed for feature Hydrophobe 3
(Figure 8). Fixing this feature in postprocessing the hit list
obtained from a four-feature-based pharmacophore search
(P41 model) does not improve sensitivity (Se ) 0.6) and
only marginally enhances the specificity (Sp ) 0.6) of the
model.

HS-Pharm Search vs Docking. We believe it would not
be appropriate to compare the accuracy of our HS-Pharm
searches with that of existing ligand-based or protein-ligand
based pharmacophores, since all reported pharmacophores57–66

for the three targets were queried with different compound
libraries, out of which the decoys were usually randomly
selected from druglike compounds without assessing that true
actives and decoys really span the same chemical space. We
can thus assume, in agreement with a recent study on the
importance of decoy selection,67 that the screening accuracy
of reported pharmacophore models is in most cases largely
overestimated. The most reliable comparison to our view-
point consists in comparing our method with molecular
docking, since both approaches rely on the 3-D coordinates
of the target protein and on an identical compound library.
For the three targets under investigation, the same targeted-
focused libraries as those used above were thus docked into
their respective binding sites. To avoid target dependency,4

three of the best-performing docking tools (Gold, FlexX, and
Surflex) in combination with their native scoring function,
were then used to rank screened compounds by decreasing
docking scores. For two of the three test cases (NA and
ADRB2), the HS-Pharm approach outperformed the best
possible docking tool in a screening scenario where the top-
ranked compounds (ca. 1%) would be experimentally tested
for in Vitro binding (Figure 9). Due to the higher number of
less-specific hydrophobic features, the COX-2 structure-based
pharmacophores are still too fuzzy to be really informative
and therefore less competitive than a pure docking approach
(Figure 9). Even if multiple pharmacophores are serially
screened in the HS-Pharm approach, it is still much faster
than docking (CPU timings for docking were ca. 10-12 h
vs 5-20 min for four-feature HS-Pharm screening), and
therefore it is a true alternative to docking in most cases.

Advantages and Drawbacks of the HS-Pharm Ap-
proach. The worldwide development of structural genomics
programs enables the identification of high-resolution 3-D
structures of an ever increasing number of potentially
interesting targets for which small-molecular-weight ligands
need to be identified.68 Searching compound libraries for
potential hits that satisfy receptor-based pharmacophores is
one of the computational methods of choice in this case, since
molecular docking is computationally expensive, and it is
supposedly relatively inaccurate to identify virtual hits from
apoprotein structures.69 The SBP approach15 is particularly
interesting in such scenarios, as it directly generates ready-
to-use pharmacophore queries from the ligand-free protein
3-D atomic coordinates. However, a major drawback of the
current method is the combinatorial explosion of possible
pharmacophoric queries with the increase of selected features.
For two of the three targets investigated in the current study,
the number of possible pharmacophores is far too high to

Figure 8. Heat plots for screening cyclooxygenase-2 inhibitors with four-feature pharmacophore models. Matched features are colored in
red; unmatched features are colored in blue. (A) True positives. (B) Positives. (C) Differential feature matching frequencies between true
positives and positives. (D) Sensitivity vs specificity of various pharmacophore searches: P3, three-feature pharmacophores; P4, four-
feature pharmacophores; P41, four-feature pharmacophores with hydrophobe 3 fixed; P5, five-feature pharmacophores.
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practically screen a library of reasonable size (>10 000
ligands), even after 2-D filtering. It is thus of the utmost
importance to reduce the number of interesting features and
consequently the number of pharmacophore combinations
without losing much information. Prediction of the most
likely anchoring atoms with a machine learning algorithm
and restriction of the pharmacophore definition only to those

features close to these atoms considerably decreases the
number of features by at least a factor 2 (Figure 10) and
thus drastically simplifies the number of all corresponding
pharmacophores (Table 4).

However, one has to be aware of the limitations of the HS-
Pharm approach. There are still drawbacks to the proposed
flowchart. The first one resides in the fact that the LUDI
interaction maps consist only of three possible feature types
(H-bond acceptor, H-bond donor, and hydrophobe) and omit
charged and aromatic features, commonly used in ligand-
based pharmacophore definitions. This simplification, while
not affecting sensitivity, is likely to decrease the specificity
of the receptor-based model since a H-bond acceptor can be
mapped, for example, to what should be a negatively
ionizable feature, or a hydrophobic group to what should be
an aromatic feature, and thus lead to false positives in the
hit list (Figure 11). Looking at the individual accessibility
and probability of interaction (IA) for atoms selected by our
machine learning approach did not permit the derivation of
general rules for modifying H-bond acceptor/donor and
hydrophobe features into negative/positive ionizable and
aromatic features. A manual editing of features is still
possible, but it requires a significant knowledge of actives

Figure 9. ROC plots from structure-based screening of three targets
(A, neuraminidase; B, �2 adrenergic receptor; C, cyclooxygenase-
2) using random picking (black dotted lines); the HS-Pharm
approach (black solid lines); and molecular docking with FlexX
(red lines), Gold (green lines), and Surflex (blue lines). Identical
targeted compound libraries and active site definitions were used
for the comparison. ROC plots for HS-Pharm screens are incomplete
since only compounds passing any of the four-feature pharma-
cophores (neuraminidase, P41 model; �2 receptor, P44 model;
cyclooxygenase-2, P41 model) can be ranked by decreasing Fit
values.

Figure 10. Number of pharmacophoric features defined from LUDI
interaction maps, with (right columns) or without (left columns)
machine-learning-based prioritization of ligand-interacting atoms.
H-bond acceptor, H-bond donor, and hydrophobic features are
represented by white, gray, and black bars, respectively.

Table 4. Number of Possible Pharmacophores Pa Depending on
the Total Number of Features F and the Number of Features f
Selected for the Query, with and without Restricting Feature
Identification

F P

protein unrestrictedb restrictedc f unrestricted restricted

neuraminidase 23 7 3 1771 35
4 8855 35
5 33649 21

�2 receptor 27 10 3 2925 120
4 17550 210
5 80730 252

cyclooxygenase-2 10 6 3 120 20
4 210 15
5 252 6

a P ) F!/f!(F - f)!. b Catalyst features derived from LUDI
interaction maps. c Catalyst features derived from LUDI interaction
maps, close to predicted ligand-interacting atoms according to the
voting model on CFP2 cavity fingerprints.
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and their structure-activity relationships, and therefore it is
not applicable for novel genomic targets.

A second drawback lies in the physicochemical properties
of the binding site of interest. As far as polar and hydro-
phobic features are well-balanced (e.g., neuraminidase and
�2 adrenergic receptor), the corresponding pharmacophores
will capture the directionality of molecular interactions
necessary for a ligand to achieve binding. For very hydro-
phobic binding sites (e.g., COX-2), this directionality is lost,
since the ratio of hydrophobic-over-polar features is too high
(Figure 10). The resulting pharmacophores (Figure 8) are
then much less specific and slightly less sensitive than those
derived from more polar binding sites (Figures 4 and 6). For
strongly apolar binding sites, the herein proposed structure-
based approach can thus be considered as a preliminary
filtering step able to downsize a chemical library.

As expected for any structure-based method, HS-Pharm
is sensitive to protein atomic coordinates and induced fit
effects. This explains, in addition to the hydrophobic nature
of the cavity, the poorer performance of the HS-Pharm
screening in the case of the COX-2 target for which rotameric
states of a few key anchoring residues are ligand-dependent.
We have not currently compared HS-Pharm to other methods
able to generate structure-based pharmacophores11,17,23,25 but
think that the above-reported conclusions still hold. The main
advantage of the HS-Pharm approach does not reside in the
pharmacophore perception and screening but in the signifi-
cant reduction of the number of pharmacophoric features and
possible pharmacophores thanks to the machine-learning
prediction of hot spots. In our hands, restricting the number
of features/pharmacophores increases the specificity of the
pharmacophore searches by lowering the number of selected
false positives. Therefore, applying the same preselection step
to other methods will probably lead to very similar results.
We chose to couple our knowledge-based ligand-anchoring
prediction method to Discovery Studio for the possibility to
script many operations in automated workflows (e.g., screen-
ing all n-feature pharmacophores, editing heat maps) that
considerably facilitate exhaustive pharmacophore definitions
and library screening.

CONCLUSIONS

We herewith present a structure-based approach to gener-
ate simple but efficient pharmacophore models by using a
machine learning algorithm trained on known cavity finger-
prints first to predict the most likely ligand-anchoring atoms
and second to define receptor-based pharmacophores from
probe interaction maps focusing on those atoms. The
approach has been applied to three ligand-binding sites of
pharmacological interest in order to distinguish known
actives from chemically similar decoys. As already noticed
for ligand-based pharmacophore searches,70 four-feature
pharmacophoric descriptions achieve the best compromise
between sensitivity and specificity, whatever the cavity.
Identification of features which are specifically matched by
true positives with respect to positives led in all cases to
models of significantly higher specificity at the cost of a
slightly reduced sensitivity. Although we are lacking large-
scale benchmarks, it appears that a difference higher than
15% in the above-cited matched features systematically
improves the accuracy of pharmacophore searches. Of course,
this additional postprocessing requires prior knowledge of
known actives. However, even in the absence of known
ligands, the general protocol presented in this study is
sensitive and specific enough to prioritize virtual hits of
interest. The main advantage of focusing pharmacophore
features to previously identified anchoring atoms lies in the
significant simplification of the resulting pharmacophoric
description, which enables a systematic screening of all
possible four-feature pharmacophores. Like in any pharma-
cophore search, some permissivity in the query is observed
for unbalanced pharmacophores in which hydrophobic
features are predominant. In the latter case, we advise the
use of hot-spot-guided receptor-based pharmacophore searches
as a preliminary filtering tool to downsize a compound library
before in silico screening with another computational method.
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functional effects of some of these compounds may vary with
the signaling pathway. Figure S4: Chemical structures of 10
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Figure 11. Mapping a true-positive COX-2 inhibitor (flurbiprofen,
left panel) and a false-positive decoy (right panel) to one of the 15
four-feature HS-Pharm COX-2 inhibitor pharmacophores. Whereas
both compounds have been selected for a good reason (four matches
for each molecule), switching Acceptor 1 (Acc1) to a negatively
ionized feature and Hydrophobe 4 (Hyd4) to an aromatic feature
would penalize the false-positive (only two matches) without
affecting the true-positive.

1408 J. Chem. Inf. Model., Vol. 48, No. 7, 2008 BARILLARI ET AL.



REFERENCES AND NOTES

(1) Kitchen, D. B.; Decornez, H.; Furr, J. R.; Bajorath, J. Docking and
scoring in virtual screening for drug discovery: methods and applica-
tions. Nat. ReV. Drug DiscoVery 2004, 3, 935–949.

(2) Moitessier, N.; Englebienne, P.; Lee, D.; Lawandi, J.; Corbeil, C. R.
Towards the development of universal, fast and highly accurate
docking/scoring methods: a long way to go. Br. J. Pharmacol. 2008,
153, S7–S28.

(3) Warren, G. L.; Andrews, C. W.; Capelli, A. M.; Clarke, B.; LaLonde,
J.; Lambert, M. H.; Lindvall, M.; Nevins, N.; Semus, S. F.; Senger,
S.; Tedesco, G.; Wall, I. D.; Woolven, J. M.; Peishoff, C. E.; Head,
M. S. A critical assessment of docking programs and scoring functions.
J. Med. Chem. 2006, 49, 5912–5931.

(4) Kellenberger, E.; Rodrigo, J.; Muller, P.; Rognan, D. Comparative
evaluation of eight docking tools for docking and virtual screening
accuracy. Proteins 2004, 57, 225–242.

(5) Charifson, P. S.; Corkery, J. J.; Murcko, M. A.; Walters, W. P.
Consensus scoring: A method for obtaining improved hit rates from
docking databases of three-dimensional structures into proteins. J. Med.
Chem. 1999, 42, 5100–5109.

(6) Bissantz, C.; Folkers, G.; Rognan, D. Protein-based virtual screening
of chemical databases. 1. Evaluation of different docking/scoring
combinations. J. Med. Chem. 2000, 43, 4759–4767.

(7) Carlson, H. A.; Masukawa, K. M.; Rubins, K.; Bushman, F. D.;
Jorgensen, W. L.; Lins, R. D.; Briggs, J. M.; McCammon, J. A.
Developing a dynamic pharmacophore model for HIV-1 integrase.
J. Med. Chem. 2000, 43, 2100–2114.

(8) Fox, T.; Haaksma, E. E. Computer based screening of compound
databases: 1. Preselection of benzamidine-based thrombin inhibitors.
J. Comput.-Aided Mol. Des. 2000, 14, 411–425.

(9) Steindl, T. M.; Schuster, D.; Laggner, C.; Langer, T. Parallel screening:
a novel concept in pharmacophore modeling and virtual screening.
J. Chem. Inf. Model. 2006, 46, 2146–2157.

(10) Chen, J.; Lai, L. Pocket v.2: further developments on receptor-based
pharmacophore modeling. J. Chem. Inf. Model. 2006, 46, 2684–2691.

(11) Baroni, M.; Cruciani, G.; Sciabola, S.; Perruccio, F.; Mason, J. S. A
common reference framework for analyzing/comparing proteins and
ligands. Fingerprints for Ligands and Proteins (FLAP): theory and
application. J. Chem. Inf. Model. 2007, 47, 279–294.

(12) Wolber, G.; Seidel, T.; Bendix, F.; Langer, T. Molecule-pharmacophore
superpositioning and pattern matching in computational drug design.
Drug DiscoVery Today 2008, 13, 23–29.

(13) Bohm, H. J. The computer program LUDI: a new method for the de
novo design of enzyme inhibitors. J. Comput.-Aided Mol. Des. 1992,
6, 61–78.

(14) Phillips, G. N., Jr.; Fox, B. G.; Markley, J. L.; Volkman, B. F.; Bae,
E.; Bitto, E.; Bingman, C. A.; Frederick, R. O.; McCoy, J. G.; Lytle,
B. L.; Pierce, B. S.; Song, J.; Twigger, S. N. Structures of proteins of
biomedical interest from the Center for Eukaryotic Structural Genom-
ics. J. Struct. Funct. Gen. 2007, 8, 73–84.

(15) Kirchhoff, P. D.; Brown, R.; Kahn, S.; Waldman, M.; Venkatachalam,
C. M. Application of structure-based focusing to the estrogen receptor.
J. Comput. Chem. 2001, 22, 993–1003.

(16) DiscoVery Studio, version 2.0; Accelrys, Inc.: San Diego, CA.
(17) Schuller, A.; Fechner, U.; Renner, S.; Franke, L.; Weber, L.; Schneider,

G. A pseudo-ligand approach to virtual screening. Comb. Chem. High
Throughput Screening 2006, 9, 359–364.

(18) Kelly, M. D.; Mancera, R. L. A new method for estimating the
importance of hydrogen-bonding groups in the binding site of a protein.
J. Comput.-Aided Mol. Des. 2003, 17, 401–414.

(19) Kelly, M. D.; Mancera, R. L. A new method for estimating the
importance of hydrophobic groups in the binding site of a protein.
J. Med. Chem. 2005, 48, 1069–1078.

(20) Goodford, P. J. A computational procedure for determining energeti-
cally favorable binding sites on biologically important macromolecules.
J. Med. Chem. 1985, 28, 849–857.

(21) Verdonk, M. L.; Cole, J. C.; Taylor, R. SuperStar: a knowledge-based
approach for identifying interaction sites in proteins. J. Mol. Biol. 1999,
289, 1093–1108.

(22) Bruno, I. J.; Cole, J. C.; Lommerse, J. P.; Rowland, R. S.; Taylor, R.;
Verdonk, M. L. IsoStar: a library of information about nonbonded
interactions. J. Comput.-Aided Mol. Des. 1997, 11, 525–537.

(23) Ahlstrom, M. M.; Ridderstrom, M.; Luthman, K.; Zamora, I. Virtual
screening and scaffold hopping based on GRID molecular interaction
fields. J. Chem. Inf. Model. 2005, 45, 1313–1323.

(24) Spannhoff, A.; Heinke, R.; Bauer, I.; Trojer, P.; Metzger, E.; Gust,
R.; Schule, R.; Brosch, G.; Sippl, W.; Jung, M. Target-based approach
to inhibitors of histone arginine methyltransferases. J. Med. Chem.
2007, 50, 2319–2325.

(25) Ortuso, F.; Langer, T.; Alcaro, S. GBPM: GRID-based pharmacophore
model: concept and application studies to protein-protein recognition.
Bioinformatics 2006, 22, 1449–1455.

(26) Witten, I. H.; Frank, E. Data mining. Practical machine learning tools
and techniques; Elsevier: Amsterdam, 2005.

(27) Kellenberger, E.; Muller, P.; Schalon, C.; Bret, G.; Foata, N.; Rognan,
D. sc-PDB: an annotated database of druggable binding sites from
the Protein Data Bank. J. Chem. Inf. Model. 2006, 46, 717–727.

(28) Berman, H. M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T. N.;
Weissig, H.; Shindyalov, I. N.; Bourne, P. E. The Protein Data Bank.
Nucleic Acids Res. 2000, 28, 235–242.

(29) Marcou, G.; Rognan, D. Optimizing fragment and scaffold docking
by use of molecular interaction fingerprints. J. Chem. Inf. Model. 2007,
47, 195–207.

(30) OEChem, version 1.4.2; OpenEye Scientific software: Santa Fe, NM.
(31) Molecular Surface Package, version 3.0.3; Biohedron: Menlo Park,

CA.
(32) Pipeline Pilot, version 6.1; SciTegic Inc.: San Diego, CA.
(33) Quinlan, J. R. Programs for Machine Learning; Morgan Kaufmann

Publishers: San Francisco, CA, 1993.
(34) Breiman, L. Random forests. Machine Learning 2001, 45, 5–32.
(35) Freund, Y.; Shapire, R. E. In Experiments with a new boosting

algorithm, Proceedings of the 30th International Conference on
Machine Learning, San Francisco, 1996; Morgan Kaufmann: San
Francisco, CA, 1996; pp 148-156.

(36) Rogers, D.; Brown, R. D.; Hahn, M. Using extended-connectivity
fingerprints with Laplacian-modified Bayesian analysis in high-
throughput screening follow-up. J. Biomol. Screen. 2005, 10, 682–
686.

(37) Triballeau, N.; Acher, F.; Brabet, I.; Pin, J. P.; Bertrand, H. O. Virtual
screening workflow development guided by the “receiver operating
characteristic” curve approach. Application to high-throughput docking
on metabotropic glutamate receptor subtype 4. J. Med. Chem. 2005,
48, 2534–2547.

(38) Filter, version 2.0.1; OpenEye Scientific software: Santa Fe, NM.
(39) JChem, version 3.2.3; ChemAxon Kft.: Budapest, Hungary.
(40) Corina, version 3.4; Molecular Networks GmbH: Erlangen, Germany.
(41) Kellenberger, E.; Springael, J. Y.; Parmentier, M.; Hachet-Haas, M.;

Galzi, J. L.; Rognan, D. Identification of nonpeptide CCR5 receptor
agonists by structure-based virtual screening. J. Med. Chem. 2007,
50, 1294–1303.

(42) FlexX, version 2.2; BiosolveIT GmBH: Sankt Augustin, Germany.
(43) Surflex, version 2.11; BioPharmics LLC: San Mateo, CA.
(44) Gold, version 3.2; The Cambridge Crystallographic Data Centre:

Cambridge, U. K.
(45) MOE, version 2007.09; Chemical Computing Group: Montreal,

Canada.
(46) Apache Tomcat. http://bioinfo-pharma.u-strasbg.fr/scPDB (accessed

Apr 24, 2008).
(47) von Itzstein, M. The war against influenza: discovery and development

of sialidase inhibitors. Nat. ReV. Drug DiscoVery 2007, 6, 967–974.
(48) Varghese, J. N.; Smith, P. W.; Sollis, S. L.; Blick, T. J.; Sahasrabudhe,

A.; McKimm-Breschkin, J. L.; Colman, P. M. Drug design against a
shifting target: a structural basis for resistance to inhibitors in a variant
of influenza virus neuraminidase. Structure 1998, 6, 735–746.

(49) Taylor, M. R. Pharmacogenetics of the human beta-adrenergic
receptors. Pharmacogenomics J. 2007, 7, 29–37.

(50) Cherezov, V.; Rosenbaum, D. M.; Hanson, M. A.; Rasmussen, S. G.;
Thian, F. S.; Kobilka, T. S.; Choi, H. J.; Kuhn, P.; Weis, W. I.;
Kobilka, B. K.; Stevens, R. C. High-resolution crystal structure of an
engineered human beta2-adrenergic G protein-coupled receptor. Sci-
ence 2007, 318, 1258–1265.

(51) Swaminath, G.; Deupi, X.; Lee, T. W.; Zhu, W.; Thian, F. S.; Kobilka,
T. S.; Kobilka, B. Probing the beta2 adrenoceptor binding site with
catechol reveals differences in binding and activation by agonists and
partial agonists. J. Biol. Chem. 2005, 280, 22165–22171.

(52) Salom, D.; Lodowski, D. T.; Stenkamp, R. E.; Le Trong, I.; Golczak,
M.; Jastrzebska, B.; Harris, T.; Ballesteros, J. A.; Palczewski, K.
Crystal structure of a photoactivated deprotonated intermediate of
rhodopsin. Proc. Natl. Acad. Sci. U. S. A. 2006, 103, 16123–16128.

(53) Surgand, J. S.; Rodrigo, J.; Kellenberger, E.; Rognan, D. A chemoge-
nomic analysis of the transmembrane binding cavity of human
G-protein-coupled receptors. Proteins 2006, 62, 509–538.

(54) Xie, W. L.; Chipman, J. G.; Robertson, D. L.; Erikson, R. L.; Simmons,
D. L. Expression of a mitogen-responsive gene encoding prostaglandin
synthase is regulated by mRNA splicing. Proc. Natl. Acad. Sci. U. S. A.
1991, 88, 2692–2696.

(55) Masferrer, J. L.; Zweifel, B. S.; Manning, P. T.; Hauser, S. D.; Leahy,
K. M.; Smith, W. G.; Isakson, P. C.; Seibert, K. Selective inhibition
of inducible cyclooxygenase 2 in vivo is antiinflammatory and
nonulcerogenic. Proc. Natl. Acad. Sci. U. S. A. 1994, 91, 3228–3232.

(56) Sherman, W.; Day, T.; Jacobson, M. P.; Friesner, R. A.; Farid, R.
Novel procedure for modeling ligand/receptor induced fit effects.
J. Med. Chem. 2006, 49, 534–553.

HOT-SPOTS-GUIDED RECEPTOR-BASED PHARMACOPHORES J. Chem. Inf. Model., Vol. 48, No. 7, 2008 1409



(57) Shepphird, J. K.; Clark, R. D. A marriage made in torsional space:
using GALAHAD models to drive pharmacophore multiplet searches.
J. Comput.-Aided Mol. Des. 2006, 20, 763–771.

(58) Sperandio, O.; Andrieu, O.; Miteva, M. A.; Vo, M. Q.; Souaille, M.;
Delfaud, F.; Villoutreix, B. O. MED-SuMoLig: a new ligand-based
screening tool for efficient scaffold hopping. J. Chem. Inf. Model. 2007,
47, 1097–1110.

(59) Steindl, T.; Langer, T. Influenza virus neuraminidase inhibitors:
generation and comparison of structure-based and common feature
pharmacophore hypotheses and their application in virtual screening.
J. Chem. Inf. Comput. Sci. 2004, 44, 1849–1856.

(60) Zhang, Q.; Muegge, I. Scaffold hopping through virtual screening using
2D and 3D similarity descriptors: ranking, voting, and consensus
scoring. J. Med. Chem. 2006, 49, 1536–1548.

(61) Franke, L.; Byvatov, E.; Werz, O.; Steinhilber, D.; Schneider, P.;
Schneider, G. Extraction and visualization of potential pharmacophore
points using support vector machines: application to ligand-based
virtual screening for COX-2 inhibitors. J. Med. Chem. 2005, 48, 6997–
7004.

(62) Michaux, C.; de Leval, X.; Julemont, F.; Dogne, J. M.; Pirotte, B.;
Durant, F. Structure-based pharmacophore of COX-2 selective inhibi-
tors and identification of original lead compounds from 3D database
searching method. Eur. J. Med. Chem. 2006, 41, 1446–1455.

(63) Palomer, A.; Cabre, F.; Pascual, J.; Campos, J.; Trujillo, M. A.;
Entrena, A.; Gallo, M. A.; Garcia, L.; Mauleon, D.; Espinosa, A.
Identification of novel cyclooxygenase-2 selective inhibitors using
pharmacophore models. J. Med. Chem. 2002, 45, 1402–1411.

(64) Renner, S.; Schneider, G. Fuzzy pharmacophore models from molec-
ular alignments for correlation-vector-based virtual screening. J. Med.
Chem. 2004, 47, 4653–4664.

(65) Singh, S. K.; Saibaba, V.; Rao, K. S.; Reddy, P. G.; Daga, P. R.;
Rajjak, S. A.; Misra, P.; Rao, Y. K. Synthesis and SAR/3D-QSAR
studies on the COX-2 inhibitory activity of 1,5-diarylpyrazoles to
validate the modified pharmacophore. Eur. J. Med. Chem. 2005, 40,
977–990.

(66) Rollinger, J. M.; Haupt, S.; Stuppner, H.; Langer, T. Combining
ethnopharmacology and virtual screening for lead structure discovery:
COX-inhibitors as application example. J. Chem. Inf. Comput. Sci.
2004, 44, 480–488.

(67) Huang, N.; Shoichet, B. K.; Irwin, J. J. Benchmarking sets for
molecular docking. J. Med. Chem. 2006, 49, 6789–6801.

(68) Lundstrom, K. Structural genomics and drug discovery. J. Cell. Mol.
Med. 2007, 11, 224–238.

(69) McGovern, S. L.; Shoichet, B. K. Information decay in molecular
docking screens against holo, apo, and modeled conformations of
enzymes. J. Med. Chem. 2003, 46, 2895–2907.

(70) Mason, J. S.; Morize, I.; Menard, P. R.; Cheney, D. L.; Hulme, C.;
Labaudiniere, R. F. New 4-point pharmacophore method for molecular
similarity and diversity applications: overview of the method and
applications, including a novel approach to the design of combinatorial
libraries containing privileged substructures. J. Med. Chem. 1999, 42,
3251–3264.

CI800064Z

1410 J. Chem. Inf. Model., Vol. 48, No. 7, 2008 BARILLARI ET AL.


