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Structure-based virtual screening is a promising tool to identify putative targets for a specific ligand. Instead
of docking multiple ligands into a single protein cavity, a single ligand is docked in a collection of binding
sites. In inverse screening, hits are in fact targets which have been prioritized within the pool of best ranked
proteins. The target rate depends on specificity and promiscuity in protein–ligand interactions and, to a
considerable extent, on the effectiveness of the scoring function, which still is the Achilles’ heel of molecular
docking. In the present retrospective study, virtual screening of the sc-PDB target library by GOLD docking
was carried out for four compounds (biotin, 4-hydroxy-tamoxifen, 6-hydroxy-1,6-dihydropurine ribonucleo-
side, and methotrexate) of known sc-PDB targets and, several ranking protocols based on GOLD fitness
score and topological molecular interaction fingerprint (IFP) comparison were evaluated. For the four
investigated ligands, the fusion of GOLD fitness and two IFP scores allowed the recovery of most targets,
including the rare proteins which are not readily suitable for statistical analysis, while significantly filtering
out most false positive entries. The current survey suggests that selecting a small number of targets (<20)
for experimental evaluation is achievable with a pure structure-based approach.

INTRODUCTION

The pace at which novel chemogenomic approaches1 are
currently developed is likely to strongly influence the design
of bioactive molecules in the next decade. Notably, it is now
commonplace to virtually and/or physically profile a ligand
toward an heterogeneous set of macromolecular targets.2

Exhaustive coverage of the chemogenomic space for either
a ligand or a gene family cannot be addressed at the
experimental level such as new virtual screening techniques
which are needed to fill chemogenomic matrices. Up to now,
most approaches to ligand profiling rely on ligand-based in
silico screening methods by querying biologically character-
ized ligands with either 2D fingerprints3–7 or 3D pharma-
cophores.8 Structure-based approaches in which a single
compound is docked into several protein structures have
received less attention for the simple reason that biologically
annotated compound libraries are easier to set up than collec-
tions of protein binding sites. However, both retrospective9–11

and prospective structure-based target identification12,13 have
been reported recently, illustrating the fact that automating
binding site setup has become a mature field.14,15 A clear
drawback of structure-based approaches to target profiling
is the acknowledged low accuracy of scoring functions16 used
to prioritize targets from a list of protein–ligand complexes,
notably for highly polar binding sites (e.g., metalloen-
zymes)13 and the problematic statistical treatment of proteins
present in low copy number in the target database.12

The present study aims at overcoming the above-cited
hurdles by applying a robust and simple postdocking process

combining two different scoring strategies. On the one hand,
a classical energy-based scoring function is used to filter out
the very unlikely targets. On a second hand, a topological
scoring function based on protein–ligand interaction finger-
prints17 is selected for retrieving ligand poses resembling
protein–ligand interactions observed in crystal structures.
Interaction fingerprints (IFPs) encode ligand-protein interac-
tions (principally hydrophobic and ionic interactions, aro-
matic stacking, and H-bonds) into bit strings. The similarity
of the binding mode of two ligands to a common ligand-
binding site is thus measured as a distance between two bit
strings. Scoring docking poses by similarity of interaction
fingerprints to a given reference was shown to be statistically
superior to conventional scoring functions in ranking drug-
like compounds18,19 and low-molecular-weight fragments.17

We here apply the same concept to inverse screening by
systematically comparing docking poses of a unique ligand
into PDB active sites to the binding mode of the correspond-
ing cocrystallized ligands. Various scoring schemes were
applied to rate the ability of 4300 ligand-binding sites to
accommodate four different ligands (biotin, methotrexate,
4-hydroxy-tamoxifen, and 6-hydroxy-1,6 dihydropurine ri-
bonucleoside). Combining docking and IFP scores is the best
choice for any of the four ligands in order to retrieve their
true targets within a reasonably small number (<20) of
candidates.

COMPUTATIONAL METHODS

sc-PDB Target Library Setup. The 2006 release of the
sc-PDB target library14 was screened throughout this study.
It is a collection of 4300 druggable ligand-binding sites found
in the PDB in which an active site is automatically detected
from the coordinates of the bound pharmacological ligand.
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Like its mother PDB database, the sc-PDB archive contains
redundant information. Duplicate ligand-binding sites were
cleared from the database upon pairwise comparison of
entries using both ligand SMILES strings20 and protein
UNIPROT21 identifiers. To better focus on protein drugga-
bility, the ligand selection was narrowed with respect to the
previous sc-PDB release by increasing the minimal molecular
weight (non-hydrogen atoms only) from 70 to 150 and
discarding small-sized ligand-buried cavities. The new sc-
PDB data set consists in 4300 entries describing 1550
different proteins in variable copy number (from 1 to 87).

The structural characterization of sc-PDB ligands, pros-
thetic groups and cofactors was improved by defining for
each molecule a correct MOL2 file format22 with native
X-ray coordinates. For this purpose, we developed an in-
house Python script (AtomTyper) converting HET groups
from PDB23 to MOL2 file formats (Figure 1). AtomTyper
merges coordinates of the PDB file with atom and bond types
from the corresponding MOL2 template. The MOL2 template
was obtained for each HET group from the previous 2D
structural data (SD) representation,14 by ionization with Filter
v2.0.1,24 structure standardization with JChem v3.2.3,25 and
3D coordinate generation with Corina v3.4.26 None of the

PDB and the MOL2 template input files contain hydrogen
atoms. The AtomTyper algorithm reads the two input files
using the OEChem1.4.2 library,27 verifies that both molecules
have a unique number of atoms, and then transforms each
molecule into a series of atomic fingerprints. Practically, the
fingerprint encodes for each atom its neighborhood using
atom element information and successive iterative steps
(Figure 1). The chemical element (C, N, O, P, S, Br, Cl, or
F) of the atom determines the first member of the vector.
Every iteration then uses the atom identifiers from the
previous iteration and outputs the chemical elements of all
covalently bound atoms, sorted by decreasing atomic number.
Depending on the molecular size and complexity, up to 12
iterations are required to unambiguously define a unique
fingerprint per atom taking into account possible symmetry
information. Once fingerprints have been defined for both the
PDB and the MOL2 files, all pairwise fingerprint comparisons
are performed to match atoms of the two input files. Hydrogen
atoms were finally added to the ligand MOL2 file assuming
standard geometries as defined in SYBYL 7.3.22

Generating a Molecular Interaction Fingerprint for
All sc-PDB Protein–Ligand Complexes. Atomic coordi-
nates of polar hydrogen atoms in both protein and ligand/

Figure 1. PDB to MOL2 file format conversion of sc-PDB ligands. A ligand MOL2 file is obtained by merging original PDB coordinates
with atom and bond types of a MOL2 template file. Atom matching is performed by pairwise comparison of atom fingerprints. For each
atom, a unique fingerprint is generated by concatenating atom elements (sorted by decreasing element number) of its nearest neighbors
(from 6 to 12 bonds apart). In the figure, fingerprint generation is exemplified up to three iterations. The atom under consideration (top left
column) is colored in black, the nearest neighbors (1st generation), in red, the neighbors of the 1st generation atoms (2nd generation), in
blue, and the neighbors of 2nd generation atoms (3rd generation), in green. Up to 12 iterations are necessary to unambiguously match
atoms of PDB- and MOL2-generated fingerprints.
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cofactor molecules have been optimized by constrained
docking using the 7–8 times speed-up setting of the GOLD
3.1 program.28 To lock the heavy atom positions, a strong
similarity constraint must be satisfied (shape overlap to the
input MOL2 ligand coordinates, constraint weight of 100).
For the full sc-PDB, the root-mean-square-deviation (com-
puted on all atom positions) of the refined ligand from the
original structure was always below 1 Å. Polar hydrogens
of the protein which have been rotated to optimize H-bonding
were saved and stored in the final set of protein coordinates.

For a refined sc-PDB entry, a molecular interaction
fingerprint (IFP) was computed as previously reported17 to
describe the reference binding mode. The interaction fin-
gerprint comprises 8 bits per binding site residue encoding
for hydrophobic contacts, aromatic interactions (face to face,
edge to face), H-bonds (donor to acceptor, acceptor to donor),
ionic interactions (positive to negative, negative to positive),
and metal complexation.

sc-PDB Library Screening. The overall screening strategy
is described in Figure 2. The sc-PDB target library was
screened by high-throughput docking of a ligand of interest.
Ligand 3D coordinates were generated from the correspond-
ing sc-PDB SD files using Corina v3.4, the ionization state
at pH 7 was manually checked and no formal charges
specified in the MOL2 output file. For docking, the 2 times
speed-up settings of the GOLD 3.1 genetic algorithm were
used. Ten independent jobs were submitted for each ligand,
and poses were scored with the Gold fitness score (Gold-
score) and saved if the Goldscore was positive. For each
sc-PDB entry, the docking output was processed to extract
the average fitness score9 and to generate the docked IFPs,
i.e. the interaction fingerprint between the protein and saved
ligand poses. Again, coordinates of polar hydrogens of the
target which have been rotated to score each pose were saved
in temporary files. The similarity of the binding mode of
docked poses to the reference pose (refined protein–ligand

Figure 2. Flowchart for screening the sc-PDB target library. A ligand is docked in a sc-PDB binding site using the GOLD v3.1 program28

and scored both according to the GOLD fitness function and similarity of interaction fingerprints (IFPs)17 to the corresponding sc-PDB
entry (X-ray coordinates of the protein–ligand complex). All virtual complexes are stored in a table registering the protein active site, the
corresponding protein name, average fitness, and IFP Tanimoto coefficients (Tc1 and Tc2 scores). Tc1 describes the similarity to the X-ray
pose using a full bit string, whereas Tc2 registers similarity to a fingerprint truncated to polar interactions only.
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X-ray structure) was measured using the Tanimoto coefficient
derived from corresponding interaction fingerprints. Two
Tanimoto coefficients were computed by comparing either
the full fingerprints (Tc1 score, 8 bits/residue) or truncated
fingerprints (Tc2 score, 5 bits/residue coding for polar
interactions only) of reference and docked IFPs. A final table
was generated to summarize all results describing the sc-
PDB entry, the protein name, pose number, average Gold-
score, and Tc1 and Tc2 values.

Target Ranking. The Pipeline Pilot protocol29 was
designed to postprocess the docking output and iteratively
compute sensitivity (Se) and specificity (Sp) for each protein
name stored in the database.

Se) TP
TP+ FN

Sp) TP
TP+ FP

where TP are true positives, TN are true negatives, FP are
false positives, and FN are false negatives (actives standing
for all sc-PDB copies of the considered protein).

The receiver operating characteristic (ROC) curve is a
graphical plot of the sensitivity (true positive rate) vs 1 -
specificity (false positive rate) for a binary classifier system
(active or inactive) as its discrimination threshold is varied.

Sensitivity, specificity, and area under ROC curve (ROC
score) were computed for three different ranking schemes
(ranking by average Goldscore, Tc1, and Tc2).

RESULTS AND DISCUSSION

Serial Ligand Docking in sc-PDB Binding Sites. Four
independent screens of the sc-PDB target library were carried

out by high-throughput docking. The ligands of interest were
biotin (BTN), methotrexate (MTX), 4-hydroxy-tamoxifen
(OHT) ,and 6-hydroxy-1,6-dihydropurine ribonucleoside
(HDPR) (Table 1). Each of these ligands has registered
primary and secondary targets in the sc-PDB (Table 1). By
primary targets, we here mean the proteins for which the
current ligand shows the best in vitro affinity. Secondary
targets also bind to the ligand but usually with a lower
affinity. The latter were selected either from existing litera-
ture9 or the occurrence of cocrystal structures in the sc-PDB.

All four ligands are chemically diverse and exhibit
different molecular properties (Table 1) and different binding
modes to their primary targets (Figure 3). Although hydro-

Table 1. Properties of Four Ligands Used in the Present Study

a Molecular weight. b Number of rotatable bonds. c Polar surface area. d Predicted octanol/water partition coefficient. e H-bond acceptor
count. f H-bond donor count (all properties calculated in Pipeline Pilot29). g The copy number for each target in the sc-PDB is indicated in
brackets.

Figure 3. Distribution of molecular interactions in representative
interaction fingerprints (IFPs) of four ligands cocrystallized with
one of their primary targets (BTN-steptavidin 1luq entry;
MTX-dihydrofolate reductase 4dfr entry; OHT-estrogen receptor
R 3ert entry; HDPR-adenosine deaminase: 1a4m entry). The total
IFP lengths are indicated on the top of the columns.
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phobic contacts are always predominant in the corresponding
protein–ligand IFPs and mainly encode for shape recognition,
aromatic stacking is absent in BTN recognition, ionic
interactions only occur in two test cases, and metal coordina-
tion only appears for HDPR binding. As a consequence, the
number of successful dockings is slightly different in the
four runs (Table 2) and is typically due to failures in docking
large ligands into the smallest binding pockets. GOLD28

fitness (GS) values depend on the ligand (the more hydro-
phobic, the lower the GS score). The overall shapes of the
four GS distributions are nearly identical (Figure 4, Table
2). About 80% of sc-PDB database entries are ranked within
one standard deviation of the average GS mean, and ca. 10%
of them show significantly higher GS values. Similar
observations can be drawn by inspecting IFP similarity
distributions (Tc1 and Tc2 scores). Therefore, fusing GS and
Tc1/Tc2 values in a consensus scoring should be most
efficient by selecting only the top 10% best-ranked entries
for each individual target list.

Neither Fitness nor IFP Similarity Scores Can Alone
Ensure an Efficient Ranking of True Primary Targets.
BTN’s true primary target is bacterial steptavidin. The sc-PDB
database contains 13 streptavidin entries, which share similar
ligand-binding sites, all being suitable for biotin binding. GOLD
accurately docked BTN into all sc-PDB streptavidin entries;
the predicted binding modes are highly similar to that observed
in the cocrystallized biotin-streptavidin complex (Figure 5,
Supporting Information Table S1). In the screening for BTN
targets, the ranking of the 4300 sc-PDB entries using Goldscore
(GS) allowed the recovery of 12 true primary targets among
the top 10% scorers (Figure 4A). The Tc1 score clearly
underperformed the GS score in ranking true primary targets,
and only placed seven of them among the top 10% scorers,
despite the good docking poses. This observation is a direct
consequence of the chemical heterogeneity of the reference
ligands cocrystallized with the 13 streptavidin entries, from
which the Tc1 score is derived. Although all steptavidin ligand-
binding sites describe the same protein cavity, the cocrystallized
ligands belong to three distinct chemotypes (biotin analogues,
benzoate derivatives, and a peptide) corresponding to three
different binding modes.

Similar observations could be drawn from the sc-PDB
screening for HDPR targets. HDPR docking into its true
primary target (adenosine deaminase) was accurate (Sup-
porting Information Table S2), and GS efficiently ranked
adenosine deaminase entries among the top scorers; however,
IFP scoring by Tc1 values discriminated adenosine deami-
nase binding sites cocrystallized with nucleoside and non-
nucleoside inhibitors (Figure 4B). In both BTN and HDPR
“easy docking” cases, GS efficiently prioritized the true
primary target whereas Tc1 ranking was less precise, due to
several possible binding modes observed for the reference
cocrystallized ligands.

Let us consider the more difficult example of MXT
docking into its true primary target dihydrofolate reductase
(DHFR). MXT is a flexible ligand, which is only partly
buried upon binding to DHFR (Figure 6A). Moreover, the
experimentally determined binding mode involves a cofactor
(NADP) and water molecules. The 22 DHFR sc-PDB entries
consist of an extremely heterogeneous set of druggable sites;
in addition to conformational changes due to species
specificity or protein flexibility, multiple ligand-binding site
definition arises from the diversity of cocrystallized ligands
(folate analogues, pyrimidine or quinazoline derivatives in
presence/absence of cofactor, cofactor analogues, see Sup-
porting Information Table S3). Docking of MXT into DHFR
resulted in a wide range of poses (Figure 6B), whose
accuracy was not well evaluated by the GS score (Figure
6C). Typically, the GS score failed to discriminate poses of
MTX into the DHFR substrate binding site (e.g., MTX poses
in 1dyh and 1dr1 entries got almost identical GS scores
although only docking in 1dyh was accurate). The GS score
could even not distinguish MTX docked into the cofactor
site (1dr7 entry) from MTX reasonably well redocked into
the substrate site of DHFR (4dfr entry). By contrast, IFP
similarity scores efficiently captured the key interactions that
involved important protein residues. Despite the flexibility
of MTX solvent exposed moiety, these interactions were
mainly fulfilled, consequently yielding to high Tc1 and Tc2
values. In the sc-PDB screening for MTX targets, Tc1
consequently outperformed GS in ranking true primary
targets (Figure 4C). The first DHFR entry was ranked in

Table 2. Statistical analysis of inverse screening runs for four ligands

ligand BTN MTX OHT HDPR

percent of successful dockingsa 100 98.7 96.7 100

distribution of average Goldscoresb

mean ( stdc 43.4 ( 7.0 50.8 ( 11.5 27.0 ( 10.0 46.5 ( 6.5
Z maximal valued 4.5 3.5 3.4 5.2
percent of entries with –1.2 < Z < 1.2 79.1 87.1 80.7 79.0
percent of entries with Z g 1.2 11.7 6.5 10.1 12.0

distribution of Tc1 scorese

mean ( std 0.448 ( 0.139 0.494 ( 0.127 0.424 ( 0.152 0.457 ( 0.143
Z maximal value 3.9 4.0 3.8 3.8
percent of entries with –1.2 < Z < 1.2 77.7 81.2 81.1 77.8
percent of entries with Z g 1.2 11.8 10.7 10.7 12.0

distribution of Tc2 scoresf

mean ( std 0.289 ( 0.221 0.301 ( 0.216 0.103 ( 0.149 0.301 ( 0.202
Zd maximal value 3.2 3.2 6.0 3.5
percent of entries with –1.2 < Z < 1.2 71.0 73.0 90.0 78.6
percent of entries with Z g 1.2 11.8 11.7 10.0 10.0

a Percentage of sc-PDB entries for which at least one docking pose could be registered. b GOLD fitness score averaged over a maximum of
10 independent runs. c Mean value ( standard deviation. d Z ) (score - mean)/std. e Similarity on full length IFPs. f Similarity on truncated
IFPs (see Computational Methods).
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position 39 of sc-PDB entries sorted by GS, whereas nine
DHFR were found among the top 39 scorers (ca. top 1%
scorers) when ranked by the Tc1 value.

The last example we investigated concerns the screening
for OHT targets. OHT true primary targets consist of the
estrogen receptor R (ERR), the estrogen receptor � (ER�),

and the estrogen-related receptor γ (ERRγ). OHT is an
antagonist thereby exclusively binds to the antagonist state
of estrogen receptors. Activation of receptor is accompanied
by large scale conformational changes preventing OHT entry
into its binding site (Figure 7). In the sc-PDB database, the
percentage of antagonized protein structures is 58.8%, 16.7%,

Figure 4. Ranking sc-PDB entries by Gold fitness (GS) and fingerprint similarity (Tc1) scores. GS and Tc1 distributions are presented on
the left and right panels, respectively. (A) BTN screen, streptavidin sites derived from biotin-like compounds (red), benzoate derivatives
(blue), and peptide (green). (B) HDPR screen, adenosine deaminase sites derived from nucleoside derivatives (red) and non-nucleoside
inhibitors (blue). (C) MTX screen, dihydrofolate reductase substrate (red) and NADP cofactor (blue) sites, (D) OHT screen, estrogen
receptor R (red), estrogen receptor � (blue), and estrogen-related receptor γ (green). The top 10% entries are displayed on the top right
corner of each plot.
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and 100% for ERR, ER�, and ERRγ, respectively. Docking
of OHT failed in the agonist state of estrogen receptors and
mainly succeeded in the antagonist state, leading to a bimodal
distribution of OHT primary true targets in both GS and Tc1
ranking lists (Figure 4D, Supporting Information Table S4).
Note that inaccurate OHT poses in agonist state of ER�
yielded Tc1 scores higher than 0.6 (which is the top 10%
threshold) and Tc2 scores close or equal to 0. A common
feature of very hydrophobic binding sites, like that of
estrogen receptors, is overestimation of Tc1 due to prepon-
derance of non directional apolar interactions in the finger-
print. Tc2 is thus required to unambiguously identify
inaccurate docking poses.

As previously reported,9 we thus observed that GOLD is
able to accurately predict the binding mode of the ligands
of BTN, MTX, OHT, and HDPR into their primary true
targets, provided that the selected ligand-binding site is the
suitable one. Here, we showed that good poses do not
necessarily correspond to high GS values. IFP Tc1/Tc2 scores
help to correct this situation at the condition that the query
(ligand under investigation) and the reference ligands
(compound cocrystallized with the binding site of interest)
share similar pharmacophoric features.

Is the ROC Score a Better Metric than Enrichment
to Rank Targets? Since none of the scoring functions can
efficiently rank targets for all four investigated ligands by a
applying a simple threshold, we investigated the possibility
of applying a thorough statistical treatment of GS and Tc1
scores for target selection. Unfortunately and as already
mentioned in previous reports,9,12 the benefit of such an
approach varies with the number of registered entries
describing each protein stored in the database. Multiple
ranking strategies using enrichment-based or ROC-based
curves30 can be applied at the condition that a precise
protein is sampled enough throughout the curve. Annota-
tion of sc-PDB entries by a protein generic name allows
to discriminate populated proteins (at least five copies in
the data set) from rare proteins (less than five entries) and
consequently apply different statistical treatments to both

protein subsets. Among the 1434 different proteins present
in the sc-PDB, 189 belong to the category of populated
proteins for which sensitivity (percentage of the protein
copies retrieved at a defined threshold) and ROC curves
can be iteratively computed.

Four composite ranking protocols were thus tested for
their ability to optimize both sensitivity (percentage of
the true targets retrieved) and precision (percentage of true
targets among selected proteins). In a first protocol
(protocol 1, Table 3) a target was selected if 50% of their
corresponding sc-PDB entries (sharing the same generic
protein name) were present among the top 10% scorers
in three target lists ranked by decreasing GS, Tc1, and
Tc2 scores. The loose top 10% threshold was selected for
its ability to retrieve entries with Z scores significantly
above 1 whatever the metric used (Table 2). The ranking
protocol successfully identified a true target in two cases
(MTX, OH) without generating false positives, but the
method is too drastic and prone to generate false negatives,
especially in the BTN and HDPR screens.

The observed low target recovery rates are not necessarily
related to docking failures nor to inaccurate scoring, but can
result from the heterogeneity of ligand-binding sites for a
single target, in which the most suitable one for the ligand
under investigation is insufficiently represented. The OHT
screening is an illustrative example of multiple binding site
definitions. Among the 12 sc-PDB copies of ER�, only two
correspond to the antagonist state of the receptor to which
OHT binds to. Consequently, docking OHT into ER� binding
sites was unproductive 10 times and was successful only
twice, resulting in overall poor statistics for this receptor
(Supporting Information Table S4). Out of the 17 sc-PDB
copies of ERR, a majority (10) describe the relevant
antagonist state thus explaining why this receptor is selected
by the ranking protocol 1.

The area under ROC curve (ROC score) is insensitive to
early recognition30 and has been demonstrated to correspond
to a linear scale average of the protein ranks. In the present
application, it may account for the heterogeneity of ligand-
binding sites. Two ranking protocols (protocols 2 and 3,
Table 3) were thus used to prioritize targets exhibiting a ROC
score above a defined threshold (0.7 in the current study).
Whereas protocol 2 ranked targets according to their GS
score, protocol 3 was used to evaluate the Tc1 metric in a
similar ranking scheme (note that we applied a Tc2-
dependent correction to Tc1 in order to take into account
bias introduced by hydrophobic binding sites). Both protocols
are more efficient than the enrichment-based protocol 1 in
selecting the true targets in the target lists (sensitivity) but
at the expense of a much lower precision (Table 3).

ROC-based selection illustrates two potential weaknesses
in virtual screening. First, the ROC score is highly dependent
on the score distribution mode and systematically misses true
targets if few of the corresponding sc-PDB entries are
retrieved at the very beginning of the rank-order list and the
remaining entries at the end as exemplified by ER� in OHT
screen (GS and Tc1 metric) and for adenosine deaminase in
HDPR screen (Tc1 metric, Table 3). Second, permissive
ligand-binding sites in term of molecular interactions will
be systematically selected by any ROC-derived protocol as
far as scores are neither evenly distributed nor biased toward
low values. This explains the higher number of false positives

Figure 5. Docked poses of biotin in steptavidin. Docked conforma-
tions (magenta) after best-fit CR superposition of streptavidin
coordinates used for docking and the 1luq entry (cocrystallized
biotin in green). White wires represent the backbones of fitted
proteins. The white Connolly surface shows the binding cavity in
the 1luq entry. The rmsd of docked biotin heavy atoms from the
X-ray coordinates ranges from 0.33 to 2.03 Å.
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generated by protocols 2 and 3 (20–26% of all sc-PDB
populated proteins upon fitness ranking and 9–18% upon Tc1
ranking, Table 3). Interestingly, none of the false positives
selected by Tc1-based ROC curves are common to the four
screens, whereas four frequent hitters were observed upon

the GS-based ROC selection (5′-deoxyribonucleotidase,
isopenicillin N synthetase, Pentaerythritol tetranitrate reduc-
tase, thermolysin). For these four proteins sharing very polar
active sites, all sc-PDB copies are scored in the upper part
of the GS ranking list (Z score of ca. 1).

Figure 6. Three-dimensional structures of the MTX-DHFR complex. (A) Substrate (pdb entry 4dfr) and cofactor (pdb entry 1ra2) binding
sites in DHFR from E. coli. Both protein coordinates have been matched on CR atoms. Protein-bound coordinates of MTX (magenta sticks)
in the substrate-binding site and of NADP (yellow sticks) in the contiguous cofactor-binding site are shown in the protein cleft rendered
as a MOLCAD32 surface channel. (B) Docked poses in all 22 DHFR entries (magenta) have been matched to a X-ray pose (in 4dfr, green)
and overlaid after best-fit superposition of DHFR CR coordinates. White wires represent the backbones of fitted protein coordinates. (C)
GS, Tc1, and Tc2 scores of MTX/DHFR docked complexes related to the root-mean-square deviation in angstroms of MTX heavy atoms
in the 4dfr entry from those in the docked complex after bestfit superposition of DHFR CR coordinated. For the sake of clarity, GS values
have been divided by 100 and entries were sorted by increasing GS. The two HDPR cofactor sites, in 1dr2 and 1dr7 entries, are marked
by a star.

Figure 7. Conformational changes upon ERR receptor activation. The agonist state of ERR bound to the agonist estradiol (left, 1qkt entry)
is compared to the antagonist state of ERR bound to the antagonist OHT (right, 3ert entry). Protein backbones are depicted using white
ribbons, excepted for the activation helix 12 which is colored in green and magenta in the agonist and antagonist forms of the receptor,
respectively. In the ball and stick representation of ligands, oxygen atoms are colored in red, nitrogen atoms in blue, and carbon atoms
either in green (estradiol) or magenta (OHT). The binding cavity indicated by a white Connolly surface is significantly smaller and more
closed in the activated state than in the inactivated state of the receptor.
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Combination of the two ROC-based target lists (consensus
protocol 4) significantly decreases the number of false
positives to a reasonable low amount of targets (from 3 to
12 which means less than 6.5% of all sc-PDB populated
proteins) without affecting the target sensitivity. It would
still miss the adenosine deaminase as true target of HDPR
because of the inaccuracy of the Tc1 metric in this precise
case. In fact, the medium accuracy of ROC-based selection
using either GS or the Tc1 metric is not due to the metric
itself but to imperfect annotation of ligand-binding sites.
In all four cases, an additional level of manual annotation
based on the precise location of the ligand-binding site
and protein conformation (e.g., active vs inactive state of
estrogen receptors) drastically increases ROC scores
(Figure 8) for true targets of the four reference ligands,
whatever the metric used. It is worth noticing that the GS
score is accurate enough to discriminate true from wrong
binding sites in all four cases. Although it requires an
additional postprocessing step, the Tc1 metric is particu-
larly well suited for the precise binding site triage, once
the annotation level is high enough.

How to Handle Rare Proteins. The ROC statistics can
only be used if a property (protein name in the present case)
is sufficiently sampled in the data set. We here made the
choice to apply it to proteins present in at least five copies
in the database. However, the sc-PDB contains much more

rare proteins (n ) 1245) in low copy number (<5) than
populated proteins (n ) 189) in high copy number (g5).
Rare proteins thus deserve a special statistical treatment.
Among the various possibilities based on enrichment cal-
culations, the ranking protocol 1 (Table 3) which prioritize
proteins common to the top 10% scorers (GS, Tc1, and Tc2
scores) appears the best (Table 4). Corresponding target lists
are very small (from 2 to 13 targets) and contains few false
positives. However, the ranking scheme is far from perfect.
It recovers four rare true targets out of five for biotin
(hypothetical biotin ligase is omitted) but misses pterin
reductase as MTX target and three rare targets (protein kinase
C, prostaglandin synthase I, quinone oxidoreductase) out of
four in the OHT screen.

Customized Protocol to Efficiently Retrieve True
Targets in All Scenarios. Having selected relatively robust
ranking protocols for the two populations of targets (popu-
lated, rare) present in the sc-PDB, we next combined them
into a unique workflow to address all targets at the same
time. Protocol A (Table 5) combines the ROC-based protocol
4 for populated targets (Table 3) and the enrichment-based
protocol 1 for rare proteins (Table 4). Altogether, 8 out of
the 16 true targets of the four ligands investigated herein
are effectively recovered. As expected, primary targets (for
which the ligands exhibit the highest affinity) are easier to
recover than secondary targets. However, the ranking
protocol A still misses two primary targets (ER� for OHT,
adenosine deaminase for HDPR) mainly because of the
current inaccuracy of binding site definition which merges
agonist and antagonist states (ER�) and nucleoside and non-
nucleoside binding sites (adenosine deaminase). We thus
decided to apply a fuzzier selection scheme (protocol B)
consisting in selecting any protein for which at least one
entry is common to three lists (top 10% scorers) of sc-PDB
entries ranked by decreasing GS, Tc1, and Tc2 scores,
respectively. Protocol B selects 12 out of the 16 true targets
and misses no primary target for any of the four ligands
(Table 5). Although protocol B is less drastic than protocol
A, it does not select significantly more false positives than
protocol A (Table 6). The obtained target lists contain a
proportion of rare vs populated proteins similar to that
obtained with protocol A. The sensitivity is notably enhanced.
In the BTN screen, all primary and secondary targets were
identified, especially the hypothetical biotin-ligase which was
lost by protocol A. In the MTX screen, the secondary target
thymidilate synthase was indeed selected, whereas it was not
omitted in all previously investigated ranking scenarios. In
the OHT screen, ER� was successfully identified. It is true
that none of the three known secondary targets of OHT were
retrieved. However, there are no structural data describing
the corresponding binding site location which may signifi-
cantly differ from the canonical hormone binding site. Last,
adenosine deaminase was successfully retrieved in the HDPR
screen, along with other ribonucleoside-binding proteins (e.g.,
cytidine deaminase) which were considered here as false
negatives but could in fact be true targets of ADPR due to
their binding site similarity to that of adenosine deaminase.
The overall precision is significantly higher (from 7 to 30%)
than that expected from random picking (from 0.07% for
HDPR targets to 0.4% for biotin and OHT targets) and the
target lists importantly small enough (from 10 to 26 proteins)

Table 3. Composition of Target Lists from the Set of Populated
Proteins

ligand BTN MTX OHT HDPR

ranking protocol 1a

true positivesb 0 1 1 0
false positivesc 0 0 0 1
sensitivity, %d 0 50 33 0
precision, %e 0 100 100 0

ranking protocol 2f

true positives 1 1 1 1
false positives 37 36 41 47
sensitivity, % 100 50 33 100
precision, % 2.6 2.7 2.3 2.1

ranking protocol 3g

true positives 1 1 1 0
false positives 31 18 15 34
sensitivity, % 100 50 33 0
precision, % 3.1 5.2 6.25 0

ranking protocol 4h

true positives 1 1 1 0
false positives 12 7 3 12
sensitivity, % 100 50 33 0
precision, % 7.7 12.5 25 0

a Hits are proteins with at least 50% of their corresponding
entries exhibiting GS, Tc1, and Tc2 values among the top 10%
scoring sc-PDB entries ranked by decreasing GS, Tc1, and Tc2
scores, respectively. b Number of true targets in the populated
target list (see exhaustive list of true targets in Table 1).
c Number of targets not known to bind to the ligand but present
in the populated target list. d Percentage of true targets recovered
in the populated target list: (true positives/true targets) × 100.
e Percentage of true targets in the populated target list: (true
positives/positives) × 100. f Hits are proteins with a ROC score
(area under the ROC curve) higher than 0.7, when entries are
sorted by decreasing GS values. g Hits are proteins with a ROC
score (area under the ROC curve) higher than 0.7, when entries
are sorted by decreasing Tc1 values (Tc1 set to 0 if Tc2 < 0.15).
h Hits are proteins common to the two lists defined by
ROC-based protocols 2 and 3.
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to initiate an exhaustive experimental evaluation of in silico
selected targets.

The best possible protein ranking strategy for the four
ligands is thus to combine both an energy-based and a
topology-based scoring scheme and select any target for
which at least one entry is present among the top 10% scorers
using three separate ranking lists based on a docking value
(GS) and two topological scores (Tc1, Tc2). This strategy,
which is derived only from four ligands covering only 16
out of the 1434 targets registered in the sc-PDB, may be
however not directly applicable to any new prospective
screen. A systematic docking of all nonredundant sc-PDB
ligands in all 4300 sc-PDB entries should enable to derive

more general rules for enhancing the accuracy of target
ranking with a thorough statistical control.

CONCLUSIONS

The current study illustrates the limitation of single
scoring functions to efficiently prioritize targets in inverse
screening campaigns. As to be expected, docking scores
are not accurate enough, select numerous false positives
and cannot be applied for rare proteins where there is no
rationale to applying a particular cutoff (only Goldscore
has been investigated herein but the same conclusions are
likely to be drawn for any energy-based scoring function).
Using interaction fingerprints in a topological scoring
function helps rescuing a lot of situations inadequately
treated by docking scores but requires a very precise
binding site annotation at the structural level to prevent
comparing overlapping or distinct ligand-binding cavities.
This annotation level is currently missing in the sc-PDB
database. This study also revealed limitations that have
to be overcome. First, the Tc1 score would gain in using
multiple IFP references originating from all ligands
cocrystallized with a single protein, then fusing data. This
would avoid poor scoring due to different binding modes.
This improvement is however quite hard to set up, because
in present IFPs, the size as well as the bit ordering are
binding site dependent and not necessarily consistent for
sc-PDB entries describing a single protein. The current
sc-PDB annotation by protein generic name is not sensitive
to significant conformational change (e.g., agonist/
antagonist states), multiple druggable sites (e.g., cofactor
and substrate sites), or interspecies residue variability. An

Figure 8. Variation of ROC scores for populated true primary targets of BTN, MTX, OHT, and HDPR, according to binding site annotation.
No annotations means that all sc-PDB entries sharing the generic protein name of a true populated target are considered as true positives.
In the BTN screen, site 1 and site 2 are the biotin and benzoate-binding sites in streptavidin, respectively. In the MTX screen, site 1 and
site 2 are the substrate and substrate/cofactor-binding sites in DHFR, respectively. In the OHT screen, only ERR binding sites have been
considered in their active and inactive state, respectively. In the HDPR screen, site 1 and site 2 are nucleoside- and non-nucleoside-binding
sites in adenosine deaminase, respectively.

Table 4. Composition of Target Listsa from the Set of Rare
Proteins

ligand BTN MTX OHT HDPR

true positivesb 4 0 1 0
false negativesc 1f 1 3 0
false positivesd 9 6 1 6
sensitivity, %e 80 0 25 nag

precision, %f 31 0 50 na

a Hits are rare proteins with at least 50% of their corresponding
entries exhibiting GS, Tc1, and Tc2 values among the top 10%
scoring sc-PDB entries ranked by decreasing GS, Tc1, and Tc2
scores, respectively. b Number of true targets in the rare target list
(see exhaustive list of targets in Table 1). c Number of true targets
missed by the rare target list. d Number of targets not known to
bind to the ligand but present in the rare target list. e Percentage of
true targets recovered in the rare target list: (true positives/true
targets) × 100. f Percentage of true targets in the rare target list:
(true positives /positives) × 100. g Not applicable since there are no
rare targets reported for HDPR.
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improvement of the structural annotation of ligand-binding
sites should be reached by a systematic pairwise com-
parison of registered binding sites for a single generic
protein name thus affording to cluster binding sites
according to their 3D similarity.31

ACKNOWLEDGMENT

We thank the Centre Informatique National de la Recher-
che Scientifique (CINES, Montpellier, France) for allocation
of computing time on the Linux cluster.

Supporting Information Available: Table S1 (Strepta-
vidin ranking in BTN screen), Table S2 (Adenosine deami-

nase ranking in HDPR screen), Table S3 (Dihydrofolate
reductase ranking in MTX screen), and Table S4 (Estrogen
receptors ranking in OHT screen). This material is available
free of charge via the Internet at http://pubs.acs.org.

REFERENCES AND NOTES

(1) Rognan, D. Chemogenomic approaches to rational drug design. Br. J.
Pharmacol. 2007, 152, 38–52.

(2) Hall, S. E. Chemoproteomics-driven drug discovery: addressing high
attrition rates. Drug DiscoV. Today 2006, 11, 495–502.

(3) Nidhi; Glick, M.; Davies, J. W.; Jenkins, J. L. Prediction of
biological targets for compounds using multiple-category Bayesian
models trained on chemogenomics databases. J. Chem. Inf. Model.
2006, 46, 1124–1133.

(4) Nettles, J. H.; Jenkins, J. L.; Bender, A.; Deng, Z.; Davies, J. W.;
Glick, M. Bridging chemical and biological space: “target fishing”
using 2D and 3D molecular descriptors. J. Med. Chem. 2006, 49, 6802–
6810.

(5) Bender, A.; Jenkins, J. L.; Glick, M.; Deng, Z.; Nettles, J. H.;
Davies, J. W. “Bayes affinity fingerprints” improve retrieval rates
in virtual screening and define orthogonal bioactivity space: when
are multitarget drugs a feasible concept. J. Chem. Inf. Model. 2006,
46, 2445–2456.

(6) Mestres, J.; Martin-Couce, L.; Gregori-Puigjane, E.; Cases, M.; Boyer,
S. Ligand-based approach to in silico pharmacology: nuclear receptor
profiling. J. Chem. Inf. Model. 2006, 46, 2725–2736.

(7) Keiser, M. J.; Roth, B. L.; Armbruster, B. N.; Ernsberger, P.; Irwin,
J. J.; Shoichet, B. K. Relating protein pharmacology by ligand
chemistry. Nat. Biotechnol. 2007, 25, 197–206.

(8) Steindl, T. M.; Schuster, D.; Laggner, C.; Langer, T. Parallel screening:
a novel concept in pharmacophore modeling and virtual screening.
J. Chem. Inf. Model. 2006, 46, 2146–2157.

(9) Paul, N.; Kellenberger, E.; Bret, G.; Muller, P.; Rognan, D. Recovering
the true targets of specific ligands by virtual screening of the protein
data bank. Proteins: Struct., Funct., Bioinf. 2004, 54, 671–680.

Table 5. Effectiveness of Two Customized Protocols for Ranking All True Targets

a Ranking protocol 4 for populated targets (Table 3) and ranking protocol 1 for rare targets (Table 4). b Selection of any protein for which at
least one sc-PDB entry is scored among the top 10% scorers of three sc-PDB entry lists ranked by decreasing GS, Tc1, and Tc2 scores. Rare
proteins are displayed in italic. A green icon means that the target has been selected whereas a red cross means that the target has been missed
by the corresponding ranking protocol.

Table 6. Composition of Target Lists from All sc-PDB Proteins

protocol Aa protocol Bb

target BTN MTX OHT HDPR BTN MTX OHT HDPR

targets selected 23 14 6 18 26 19 10 15
true positives 5 1 2 0 6 2 3 1
false positives 18 13 4 18 20 17 7 14
false negatives 1 2 4 1 0 1 3 0
sensitivity, % 83 33 33 0 100 66 50 100
precision, % 22 7 33 0 23 10 30 7

a Ranking protocol 4 for populated targets (Table 3) and ranking
protocol 1 for rare targets (Table 4). b Selection of any protein for
which at least one sc-PDB entry is scored among the top 10%
scorers of three sc-PDB entry lists ranked by decreasing GS, Tc1,
and Tc2 scores.

1024 J. Chem. Inf. Model., Vol. 48, No. 5, 2008 KELLENBERGER ET AL.



(10) Chen, Y. Z.; Zhi, D. G. Ligand-protein inverse docking and its potential
use in the computer search of protein targets of a small molecule.
Proteins: Struct., Funct., Bioinf. 2001, 43, 217–226.

(11) Li, H.; Gao, Z.; Kang, L.; Zhang, H.; Yang, K.; Yu, K.; Luo, X.;
Zhu, W.; Chen, K.; Shen, J.; Wang, X.; Jiang, H. TarFisDock: a web
server for identifying drug targets with docking approach. Nucleic
Acids Res. 2006, 34, W219–W224.

(12) Muller, P.; Lena, G.; Boilard, E.; Bezzine, S.; Lambeau, G.; Guichard,
G.; Rognan, D. In silico-guided target identification of a scaffold-
focused library: 1,3,5-triazepan-2,6-diones as novel phospholipase A2
inhibitors. J. Med. Chem. 2006, 49, 6768–6778.

(13) Zahler, S.; Tietze, S.; Totzke, F.; Kubbutat, M.; Meijer, L.; Vollmar,
A. M.; Apostolakis, J. Inverse in silico screening for identification of
kinase inhibitor targets. Chem. Biol. 2007, 14, 1207–1214.

(14) Kellenberger, E.; Muller, P.; Schalon, C.; Bret, G.; Foata, N.; Rognan,
D. sc-PDB: an Annotated Database of Druggable Binding Sites from
the Protein Data Bank. J. Chem. Inf. Model. 2006, 46, 717–727.

(15) Hu, L.; Benson, M. L.; Smith, R. D.; Lerner, M. G.; Carlson, H. A.
Binding MOAD (Mother Of All Databases). Proteins: Struct., Funct.,
Bioinf. 2005, 60, 333–340.

(16) Ferrara, P.; Gohlke, H.; Price, D. J.; Klebe, G.; Brooks, C. L. 3rd,
Assessing scoring functions for protein-ligand interactions. J. Med.
Chem. 2004, 47, 3032–3047.

(17) Marcou, G.; Rognan, D. Optimizing fragment and scaffold docking
by use of molecular interaction fingerprints. J. Chem. Inf. Model. 2007,
47, 195–207.

(18) Deng, Z.; Chuaqui, C.; Singh, J. Structural interaction fingerprint (SIFt):
a novel method for analyzing three-dimensional protein-ligand binding
interactions. J. Med. Chem. 2004, 47, 337–344.

(19) Mpamhanga, C. P.; Chen, B.; McLay, I. M.; Willett, P. Knowledge-
based interaction fingerprint scoring: a simple method for improving
the effectiveness of fast scoring functions. J. Chem. Inf. Model. 2006,
46, 686–698.

(20) Weininger, D. SMILES, a chemical language and information system.
1. Introduction to methodology and encoding rules. J. Chem. Inf.
Comput. Sci. 1988, 28, 31–36.

(21) Apweiler, R.; Bairoch, A.; Wu, C. H.; Barker, W. C.; Boeckmann,
B.; Ferro, S.; Gasteiger, E.; Huang, H.; Lopez, R.; Magrane, M.;
Martin, M. J.; Natale, D. A.; O’Donovan, C.; Redaschi, N.; Yeh, L. S.
UniProt: the Universal Protein knowledgebase. Nucleic Acids Res.
2004, 32, D115–119.

(22) Sybyl, version 7.3; TRIPOS: St. Louis, MO, 2007.
(23) Berman, H. M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T. N.;

Weissig, H.; Shindyalov, I. N.; Bourne, P. E. The Protein Data Bank.
Nucleic Acids Res. 2000, 28, 235–242.

(24) Filter, version 2.0.1; OpenEye Scientific software: Santa Fe, NM, 2007.
(25) JChem, version 3.2.3; ChemAxon: Budapest, Hungary, 2007.
(26) Corina, version 3.4; Molecular Networks GmbH: Erlangen, Germany,

2007.
(27) OEChem, version 1.4.2; OpenEye Scientific software: Santa Fe, NM,

2007.
(28) Verdonk, M. L.; Cole, J. C.; Hartshorn, M. J.; Murray, C. W.; Taylor,

R. D. Improved protein-ligand docking using GOLD. Proteins: Struct.,
Funct., Bioinf. 2003, 52, 609–623.

(29) Pipeline Pilot, version 6.1; SciTegic: San Diego, CA, 2007.
(30) Truchon, J. F.; Bayly, C. I. Evaluating virtual screening methods: good

and bad metrics for the “early recognition” problem. J. Chem. Inf.
Model. 2007, 47, 488–508.

(31) Schalon, C.; Surgand, J.-S.; Kellenberger, E.; Rognan, D. A simple
and fuzzy method to align and compare druggable ligand-binding sites.
Proteins: Struct., Funct., Bioinf., available online March 4, 2008, http://
dx.doi.org/10.1002/prot.21858.

(32) Exner, T. E.; Keil, M.; Moeckel, G.; Brickmann, J. Identification of
Substrate Channels and Protein Cavities. J. Mol. Model. 1998, 4,
340–343.

CI800023X

STRUCTURE-BASED SCREENING OF 3D PROTEIN LIBRARIES J. Chem. Inf. Model., Vol. 48, No. 5, 2008 1025


